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Abstract—Distributed storage systems are expected to provide
correct services in the presence of Byzantine failures, which do
not have any assumptions about the behavior of faulty servers
and clients. In designing such systems, we often encounter the
paradox of fault tolerance vs. performance (or efficiency), because
better fault tolerance usually requires a tradeoff of system
performance. In this paper, we present GRADE, a Byzantine-
fault-tolerant (BFT) distributed storage system that enables
graceful degradation. Two Byzantine quorum systems (BQSs)
are supported on each GRADE server: a masking BQS storing
generic data and a dissemination BQS storing self-verifying
ones. Based on the system status and the environment, servers
dynamically and seamlessly switch between two BQSs, without
converting the stored data. Therefore, GRADE provides high per-
formance in a normal running-state, and degrades performance
to maintain high fault tolerance in emergency situations. The
computation and communication costs of the running-state switch
are very low, and the switch is completely transparent to clients.
Our performance analysis and experimental results demonstrate
that GRADE provides a balance between performance and fault
tolerance.

Index Terms—Byzantine fault tolerance; Byzantine quorum
system; graceful degradation; storage.

I. INTRODUCTION

Quorum systems are widely used to ensure availability and

consistency of replicated data in distributed services. Among

such systems, Byzantine quorum systems (BQSs) are capable

of tolerating arbitrary failures (i.e. Byzantine failures) [1].

Several variations of BQSs with different capacities of fault

tolerance and performance have been proposed [1–6]. These

variations of BQSs are used to build Byzantine-fault-tolerant

(BFT) distributed storage services [7–10], which do not have

any assumptions on the behavior of faulty servers and clients.

When we select a variation of BQSs for BFT storage ser-

vices, the capacity of fault tolerance is an important reference.

In particular, the selection usually depends on the number of

faulty servers in the worst scenario. For instance, if there might

be at most �n−1

3
� faulty servers in a system consisting of n

servers, we need a BQS tolerating up to �n−1

3
� faulty servers,

even though the system contains no faulty servers in most of

its running time.

Performance (or efficiency) is another important metric of

storage systems. The BQS variants produce very different

performance [11], and performance is usually sacrificed in

exchange for better fault tolerance [12]. As a result, system

performance has to be sacrificed to satisfy the fault tolerance

requirements in rare situations (i.e., the worst case).

Based on the above observations, we propose GRADE, a

BFT distributed storage system that enables graceful degrada-

tion [13]. GRADE consists of n servers capable of running in

two different states, called d-State (resembling dissemination

BQSs storing self-verifying data) and m-State (resembling

masking BQSs storing generic data), respectively. Different

types of data are stored in these running-states, which provide

different capacities of fault tolerance as well as performance.

GRADE implements graceful degradation by seamlessly

switching the running-state, without interrupting its storage

services: (a) when the system starts up or is recovered by

a periodical proactive recovery [7, 14, 15], GRADE runs in

m-State to offer better performance; and (b) when GRADE

is aware of a trigger event, it switches to d-State for better

fault tolerance but relatively lower performance. In GRADE,

a trigger event indicates a security condition that could result

in more faulty servers than the capability of m-State, so that it

is necessary for the system to trade off performance for better

fault tolerance. Examples of such trigger events include: (a)

a vulnerability is found in some servers but the patch is not

available yet; (b) worms break out and will probably block

the communications of servers; and (c) servers have run for

a scheduled period since the last proactive recovery. In other

words, when a trigger event takes place, the number of faulty

servers is likely to increase soon and then break the assumption

of m-State.

On a trigger event, GRADE servers follow the graceful

degradation specification (i.e. the running-state switch proto-

col) to switch to d-States. During the switch, a naive solution

will convert all the stored data from generic data (for masking

BQSs or m-State) to self-verifying ones (for dissemination

BQSs or d-State). However, this simple approach is unaccept-

able in practice, because the data conversion is very expensive,

especially for the massive data stored in the system.

In order to tackle the problem of data type, we propose a

lazy-conversion approach: (a) no data conversion is needed in

graceful degradation, so the switch protocol is very efficient

and scalable; and (b) availability and consistency are still

ensured in d-State, in the presence of up to �n−1

3
� faulty
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servers. These benefits come at a very low price: GRADE

tolerates up to �n−1

6
� faulty servers in m-State, which is less

than �n−1

4
� faulty servers in a regular masking BQS. Besides,

the protocol for dissemination BQSs [7] is slightly revised

as the storage protocol of GRADE in d-State to handle the

unconverted generic data, which are written in m-State (see

Section III for details).

Through graceful degradation, GRADE offers better per-

formance than storage systems based on dissemination BQSs

only, while providing almost equal capabilities of Byzantine

fault tolerance. In particular, up to �n−1

3
� faulty servers are

tolerated in d-State of GRADE as well as dissemination BQSs,

but GRADE runs as a masking BQS when there is no risk

(or trigger event); therefore, it offers better performance on

average. On the other hand, compared with a masking BQS

tolerating up to �n−1

4
� faulty servers, GRADE tolerates more

faulty servers (i.e., up to �n−1

3
� in d-State) and then has a

longer period of proactive recovery (PPR), because the PPR

mainly depends on the number of faulty servers that the system

tolerates [14, 16]. Note that in a distributed storage system,

recovery is a very heavy task [7, 15]: (a) each server reboots

from trust read-only medias, to enter a non-code-error status;

(b) all data on each server are updated with the right copies,

to enter a non-data-error status; and (c) servers re-generate

or re-negotiate all cryptographic keys for communications, to

prevent attackers from impersonating any server.

GRADE provides BFT distributed storage services as a

regular BQS does, and supports graceful degradation with the

following properties:

• Low cost. There is no data conversion in the running-

state switch, and the switch costs even fewer resources

than one read (or write) operation.

• Service continuity. Each server is always ready to process

messages related to read and write operations. The stor-

age service is not interrupted by the running-state switch.

• Client transparency. Different running-states are trans-

parent to clients; i.e., all clients use a uniform protocol to

access data stored in GRADE whether it is in d-State or

m-State, even when the running-state is being switched.

• Byzantine fault tolerance. GRADE provides BFT storage

services. Meanwhile, faulty servers cannot conspire to

switch the system into d-State when there is no risk, to

unnecessarily degrade its performance.

The rest of this paper is organized as follows. In Section

II, the system model is presented. Section III shows how to

implement graceful degradation in GRADE. Faulty clients are

discussed in Sections IV, and the prototype implementation is

evaluated in V. Related work is discussed in Section VI and

we conclude in Section VII.

II. SYSTEM OVERVIEW

GRADE consists of n = 3fd + 1 servers and an arbitrary

number of clients distinct from servers. Servers are correct

or faulty. A correct server follows its specification and a

faulty one can arbitrarily deviate from its specification (i.e.,

Byzantine failure). GRADE tolerates up to fd faulty servers.

m-State m-State

Running-state switch

Proactive recovery

d-State d-State

Time increases

PPR PPR

Fig. 1. The running-states of GRADE

We assume that a client always behaves correctly in Sections

II and III, and faulty clients are discussed in Section IV.

GRADE servers are capable of dynamically switching be-

tween different BQSs: masking BQS and dissemination BQS.

They are called m-State and d-State in GRADE, to reflect the

fact that they are different from regular masking BQSs and

dissemination BQSs.

• m-State. Similar to a masking BQS [1], GRADE stores

generic data in m-State, and tolerates up to fm = � fd
2
� =

�n−1

6
� faulty servers. Please note that, compared with

a regular masking BQS tolerating up to �n−1

4
� faulty

servers, GRADE also needs to ensure data consistency

with the running-state switch.

• d-State. Similar to a dissemination BQS [1], GRADE

stores new data as self-verifying data, but the read oper-

ations support both self-verifying and generic data. In d-

State, GRADE tolerates up to fd = �n−1

3
� faulty servers

as a dissemination BQS.

Each server independently maintains a local state register,

which is changed as GRADE switches the running-state. The

local register instructs a server to follow the storage protocol

of d-State or m-State in each (read or write) operation. In

GRADE, once a threshold number of servers change their state

registers to d-State (and no data conversion is needed), the

running-state switch is completed and the system is in d-State;

otherwise, it is in m-State.

The system model of GRADE is similar to that of COCA [7]

supporting proactive recovery in BQSs. Graceful degradation

in GRADE works compatibly with proactive recovery: the

running-state switches from m-State to d-State on a trigger

event and recovers to m-State after each proactive recovery.

When GRADE starts up or is proactively recovered, the state

registers on all servers are set to m-State and it is in m-State.

One instance of the switch protocol is executed during each

PPR, to change the running-state from m-State to d-State (i.e.,

set the state registers to d-State). Thus, a state register is set to

(a) d-State only in the running-state switch, or (b) m-State only

when the server is periodically recovered (or initially starts

up). In other cases, the state registers are kept read-only.

There are up to fd faulty servers when GRADE is in d-

State, and up to fm = � fd
2
� in m-State. As shown in Figure 1,

the running-state switch is executed in m-State, and GRADE

begins to be in d-State as long as the switch is completed. Note

that there are up to fm faulty servers during the running-state

switch in m-State, and a faulty servers in m-State is still faulty

in d-State within one PPR.
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As those in regular BQSs, the data stored in GRADE can

be viewed as variables supporting read and write operations.

For a variable x, each server Si stores a local copy denoted as

[x, vi, ti], where vi is the value and ti is the timestamp of x. In

order to tolerate faulty servers, each read (or write) operation

is executed on some read (or write) quorum of servers. For

example, in a dissemination BQS, a new pair of value and

timestamp [x, v, t] must be delivered to a quorum of qdw
servers to complete the write operation, and the result of each

read operation is chosen out of the copies from a quorum

of qdr servers. Similarly, we use qmw and qmr to denote the

sizes of a write quorum and a read quorum in masking BQSs,

respectively.

Accordingly, the server protocol of GRADE is composed

of (a) the storage protocol to process requests from clients

and maintain the local copies of variables, and (b) the switch

protocol to manage the state registers. Further, the storage

protocol is composed of two parts: the d-State part and the

m-State one. A server decides to follow which part of the

storage protocol, according to its own state register. The server

protocol is described in Section III.

In order to achieve client transparency (and support proac-

tive recovery [7, 8]), threshold signature schemes (TSSs) [17]

are integrated with BQSs in GRADE. GRADE has a system-

wide key pair, the service private key and the service public

key. The service public key is known to all entities. The service

private key is distributed among the n servers based on a TSS.

Each server holds a partition of the service private key (called

a service key share), and then any h (1 < h ≤ n) servers

can cooperatively use the service private key to sign messages

while any subset of fewer than h servers cannot.

The service key pair is used to communicate with clients,

and clients only accept messages verifiable with the service

public key (i.e., signed using the service private key). In

GRADE, the threshold to sign messages is h = fd + 1, and

then a signed message (e.g., a response to clients) implies that

at least one correct server agrees with the content and ensures

its correctness. The service private key is also used to sign data

(to make them self-verifying) and tokens in the running-state

switch; see Section III for more details.

The communications among servers are authenticated; i.e.,

a correct server receives a message from another server only

if the other server sends it. The authenticated communications

are implemented through public key cryptography [7, 9] or

symmetric cryptography [15, 18]; e.g., a server signs messages

using its private key (different from the service private key),

and others can authenticate the origin. In the remainder, unless

it is explicitly noted, a “signed” message is signed using the

service private key (but not any server’s private key).

Every server can authenticate messages from clients. For

example, every client can hold a key pair to sign requests,

and servers authenticate them by verifying the signatures.

However, only the service public key is configured on clients.

Clients don’t (need to) know any server’s public key or share

session keys with any server; otherwise, these keys shall

be refreshed and re-distributed to clients in each proactive

recovery [7, 15].

Only asynchronous fair links [7, 8] are assumed to be

provided among all entities. A fair link is a channel that may

not deliver all messages sent, but if an entity keeps sending a

message to another entity then it will be correctly delivered to

the receiver eventually. In addition, the link is asynchronous;

i.e., there is no bound on message delivery delay or server

execution speed.

III. GRACEFUL DEGRADATION IN GRADE

We firstly describe the BFT storage services of GRADE, and

explain how to implement graceful degradation (i.e., switch a

BQS to another one; these two BQSs store different types of

data) without interrupting the storage services.

A. Storage Service

GRADE provides BFT storage services similar to those of

Phalanx [9], COCA [7] and BFT-BC [19]. The COCA protocol

designed for dissemination BQSs, is (a) adopted in GRADE

as the d-State part of the storage protocol and (b) extended

for generic data as the m-State part.

Client Protocol

To read a variable x, a client periodically sends a request

Req(R) to fd + 1 servers, until it receives a signed read

response Resp(R) returning the copy written by the most

recently completed operation (called the right copy).

To write a variable x, a client firstly reads it to return a

response Resp(R) and the current right copy is [x, v, t′]. Then,

it periodically sends a write request Req(W ) to fd+1 servers,

until receiving a signed write response Resp(W ). Resp(R) is

included in the write request Req(W ), and the new timestamp

tw of the variable is derived from Req(W ) and (the previous

timestamp t′ in) Resp(R). In particular, a timestamp t is an

ascending sequence number appended with an identifier; i.e.,

t = t.seq|t.u. And tw = (t′.seq + 1)|Hash(Req(W )), where

Hash(·) is a collision-free hash function.

Storage Protocol

GRADE guarantees that a read response returns the right

copy that (a) is written by some client and (b) has the highest

timestamp in the system, by executing each read (or write)

operation on some quorum of servers.

Since each client request is sent to fd + 1 servers, at least

one correct server receives the request. The server is called

a delegate for this read (or write) operation. Because clients

only know the service public key (but not any other keys

of servers), the delegate coordinates the requested operation

among servers on behalf of the client sending the request.

Note that the delegate is not a special or additional server;

otherwise, it would be a vulnerable component not tolerating

failures. On receiving a client request, each (correct) server

becomes a delegate for it.

In GRADE, a delegate initiates the storage protocol among

servers to construct and sign a response as follows:

1. The delegate executes the requested read (or write) oper-

ation on some quorum of servers. That is, it forwards the
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1. Client Request

2. Execution Result

3. Partial Signature

4. Signed Response

Fig. 2. The storage services of GRADE

client request to all servers, and collects the execution

results from a quorum of servers.

2. The delegate constructs a raw response based on the

execution results, and cooperates with other h−1 servers

to sign it. That is, it sends the raw response to all servers,

and waits from h partial signatures to combine them into

a signed response.

Then, the delegate sends the signed response to clients. The

procedure is shown in Figure 2. There are some notes on the

storage protocol as follows, and the detailed security analysis

can be found in [1, 7, 20]:

• The storage protocol is parameterized by the running-

state of GRADE, and each server follows the protocol

according to its own state register. In particular, every

message among servers carries a flag indicating the

sender server’s state register, and a server doesn’t accept

messages from any server with a state register different

from its own. We temporarily assume that the state

registers on all servers are identical, and the case of

different state registers is discussed later.

• The size of a read (or write) quorum of in m-State is

qmr (or qmw), while the size in d-State is qdr (or qdw).

In different BQSs, the result functions [1] to choose the

right copy out of copies from servers are different: (a)

in m-State or masking BQSs, the delegate discards those

copies only returned by less than fm+1 servers, and the

right copy is the one with the highest timestamp of the

remainders; and (b) in d-State or dissemination BQSs, the

right copy is the self-verifying one (i.e., verifiable with

the service public key) with the highest timestamp.

• In Step 2, the execution results collected in Step 1, are

sent by the delegate along with the raw response as

evidences to convince other servers to sign it. Before

using its service key share to partially sign the raw

response, a server firstly examines that the corresponding

read (or write) operation has been executed on a quorum;

i.e., (a) the execution results from some quorum of

servers are included as evidences, and (b) in the case of

read operations, the raw response includes the right copy

chosen out of these execution results. Because there are

up to fd faulty servers and the threshold to sign is fd+1,

at least one correct server carries out the examination and

the requested operation is guaranteed to be executed on

some quorum of servers when the response is signed.

• GRADE stores self-verifying data in d-State. So, when

the delegate’s state register is d-State (and the state

registers on other servers are also d-State), the delegate

firstly cooperates with other servers to use the service

private key to sign the new pair of value and timestamp

into a self-verifying copy, before writing it to servers.

• When a delegate sends a message to servers, the message

is also “sent” to itself and the delegate processes the

message as other servers. In particular, the delegate also

executes the read (or write) operation and partially signs

the raw response.

• The timestamp and the value of each variable are initial-

ized to zero. When a client reads a variable for the first

time1 and a server cannot find its local copy, the special

initial copy is returned.

B. Switch Protocol

Graceful degradation is implemented by the running-state

switch. The switch protocol is designed to change the state

registers on servers. The basic idea is to use the service private

key to sign a switch token, and each server sets its state register

to d-State on receiving the signed switch token.

The sketch of the switch protocol is as follows:

1. If a server notices a trigger event, it (called the initiator

of the switch protocol) sends a token-signing request

to all servers (including itself). In the token-signing

request, a credential is included, e.g., the URLs of web

pages describing the vulnerabilities or the worms that

might compromise servers.

2. On receiving a token-signing request, a server generates

a partial signature for the switch token and sends it to

the initiator, after validating the included credential.

3. The initiator periodically sends the token-signing request

until receiving h partial signatures. Then, it combines

them into a signed switch token.

4. The initiator periodically sends the signed token to all

servers (also including itself), until receiving echoes

from n− fm servers.

5. On receiving a signed switch token, a server sets its state

register to d-State and replies with an echo.

In GRADE, multiple servers may simultaneously initiate the

switch protocol; e.g., they notice a same trigger event. Whether

its state register is m-State or d-State, a server always (a)

partially signs the switch token after validating the credential,

and (b) sets its state register to d-State and replies with an

echo after receiving a signed switch token. Thus, all instances

of the switch protocol will end with enough echoes.

C. Security Analysis

In the presence of up to fm Byzantine faulty servers, the

switch protocol shall satisfy the following requirements:

• Byzantine fault tolerance. Faulty servers cannot conspire

to change the state registers of correct servers.

• Liveness. A correct server eventually receives n − fm
echoes, once it initiates the switch protocol.

1To write a variable, the client shall read it firstly.
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• Completeness. After the switch protocol is finished and

before the next proactive recovery, all read and write

requests from clients are processed in d-State to tolerate

up to fd faulty servers.

• Compatibility. The running-state switch doesn’t impact

liveness and correctness of the storage services. That is,

either before, during or after the running-state switch,

each read (or write) request gets a signed response, and

each read response returns the right copy.

Firstly, Byzantine fault tolerance and liveness are satisfied.

To finish the switch protocol, fd + 1 and n− fm servers are

required to sign the switch token and send echoes, respectively.

Because there are up to fd faulty servers in GRADE, faulty

servers cannot conspire to sign switch tokens. Because there

are up to fm faulty servers during the running-state switch and

n − fm = 3fd + 1 − fm > fd + 1, there are always enough

correct servers to generate partial signatures and echoes.

To satisfy completeness, a client request is never completely

processed in m-State after the switch protocol is finished. After

the switch protocol is finished, n− fm servers have received

the switch token, of which there are fd faulty servers at most.

Thus, completeness requires that

qmr + (n− fm)− n > fd (1)

qmw + (n− fm)− n > fd (2)

and then any quorum of qmr (or qmw) servers contains at least

one correct that had received the switch token. This correct

server doesn’t accept messages with m-State flags, and then

no read or write operation in m-State can be completed.

Compatibility implies correctness of the storage protocol.

To tolerate up to fd faulty servers in d-State, each quorum

consists of 2fd + 1 servers out of n = 3fd + 1 ones [1]:

qdr = qdw = 2fd + 1 (3)

To tolerate up to fm faulty servers in m-State, any read quorum

intersects a write quorum in at least 2fm + 1 servers (i.e., at

least fm + 1 correct ones) [1]:

qmr ≤ n− fm, and qmw ≤ n− fm (4)

qmr + qmw − n ≥ 2fm + 1 (5)

However, Equations 3, 4 and 5 are not enough to ensure

compatibility. When the running-state has been switched to d-

State but no write operation in d-State is executed, all data

are still not self-verifying2 and then the result function of

dissemination BQSs becomes invalid. In this case, a delegate

of read operations applies a revised result function: the right

copy is the one returned by fd + (n − qmw) + 1 servers.

In the worst case, any other copy is returned by at most

fd+(n−qmw) servers: fd faulty servers3 and n−qmw correct

servers not involved in the last write operation in m-State.

2It is impractical to sign each data item (to make it self-verifying) during
the switch, because there can be lots of data stored in the system.

3Within one PPR, a faulty servers in m-State is still faulty in d-State.

TABLE I
THE PARAMETERS OF GRADE

Parameter Description

n = 3fd + 1 The number of servers in GRADE.

fd
The number of faulty servers that GARDE
tolerates in d-State.

qdr = 2fd + 1

qdw = 2fd + 1
The size of a read (or write) quorum in d-State.

fm = �
fd
2
�

The number of faulty servers that GARDE
tolerates in m-State.

qmr = fd + fm + 1

qmw = n− fm
The size of a read (or write) quorum in m-State.

In order to guarantee that the delegate can always find a

copy returned by fd + (n − qmw) + 1 servers, every write

operation in m-State needs to be executed on 2fd+(n−qmw)+
1 servers at least, of which fd servers may be faulty. Then,

qmw ≥ 2fd + (n− qmw) + 1 ⇐⇒ qmw ≥
n+ 1

2
+ fd (6)

From Equations 4 and 6, it is derived that

n− fm ≥
n+ 1

2
+ fd ⇐⇒ fm ≤

fd

2
(7)

In order to achieve the greatest fm (so that the system will

stay in m-State as long as possible with better performance),

fm = � fd
2
� and qmw = n − fm. Finally, the minimal qmr

to satisfy Equations 1, 4 and 5, is qmr = fm + fd + 1. All

parameters of GRADE are listed in Table I.

The result function of the storage protocol in d-State is

revised consequently. After receiving a read request from

clients, the delegate firstly collects copies from qdr = 2fd+1
servers. Then,

C1. If there is no self-verifying copy, then no write operation

in d-State is executed after the running-state switch. So,

the right copy is the one returned by fd+fm+1 servers

(if such a copy exists; otherwise, the delegate keeps

reading copies from servers until it is returned).

C2. If not-less-than fd + 1 servers return (different) self-

verifying copies, some write operation has been executed

in d-State because at least one correct server returns its

self-verifying copy. The right copy is the self-verifying

one with the highest timestamp. Note that a faulty server

can return a self-verifying but out-of-date copy (e.g., a

copy written in d-State during the last PPR), even when

no write operation is executed after the switch.

C3. Otherwise, the delegate keeps reading copies from more

servers, until (a) fd+ fm+1 servers return an identical

copy, i.e., the right copy; or (b) fd+1 servers return self-

verifying copies and the right copy is the self-verifying

one with the highest timestamp. Note that at least fd+1
correct servers store self-verifying copies after a write

operation is completed in d-State.

Then, the delegate selects qdr execution results that contain

(a) the fd + fm + 1 identical copies and no self-verifying

copy, or (b) at least fd + 1 self-verifying copies. The right

copy is contained in these qdr execution results, and any other

servers can apply the revised result function to choose it. These
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execution result are sent to convince other servers to sign the

read response.

When all servers are correct and the links are reliable, qdr
copies from servers are enough to choose the right copy. But

if some servers are faulty or the links are unreliable, fd more

copies may be needed for the revised result function. Thus,

compared with regular dissemination BQSs, performance of

GRADE may be slightly degraded in case of read operations.

Because a server always sets its state register to d-State on

receiving a signed switch token, the following design ensures

liveness of the storage protocol during the running-state switch

(i.e., when the state registers on servers are different).

• If the state register on a server is d-State and it receives

messages with m-State flags, it replies with the signed

switch token that it has received. If its state register is

m-State and it receives messages with d-State flags, it

asks the delegate to send the signed switch token firstly.

• If the state register on a delegate is d-State and some

server asks for the switch token, it replies with the switch

token. If its state register is m-State and it receives a

signed switch token from other servers, it firstly sets its

state register to d-State and re-starts the storage protocol.

D. Credential, Switch Token and Trigger Event

The switch protocol is initiated in the following cases during

each PPR: (a) GRADE has run for a scheduled period of time

after the last proactive recovery4, or (b) another trigger event

happens before the scheduled time. A special code is used as

the credential of a scheduled switch, when a server initiates

the switch protocol. To validate such credentials (or determine

whether it is time to switch the running-state), all correct

servers shall share a trust global time or there are only limited

differences on their local clocks, which can be calibrated in

proactive recovery. For other trigger events, the credentials are

messages that can be validated by any server (e.g., the URLs

of web pages describing the vulnerabilities).

The signed switch token enables a server to immediately

set its state register to d-State, before the scheduled time. The

signed switch token is useful, even if there is no other trigger

event except the scheduled switch. For example, if the switch

token is eliminated in GRADE and each server automatically

change its state register at the scheduled time, a delegate in

d-State can only wait when it finds that other servers are in

m-State (due to the differences on their local clocks). On the

contrary, the signed switch token in GRADE accelerates the

running-state switch.

To prevent faulty servers from re-using a signed switch

token in the next PPRs, an expiration time is embedded in

each switch token (i.e., the time to start the next periodical

proactive recovery). Then, faulty servers cannot re-use it to

unnecessarily degrade performance in next PPRs, after the

state registers of all servers are recovered to m-State.

To speed up the running-state switch, a server sends the

switch token to n − fm − 2 servers (not including itself and

4In a certain environment, this period depends on fm, the number of faulty
servers tolerated in m-State.
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the initiator), when (a) it receives a signed switch token and

(b) its state register is changed from m-State to d-State. Then,

a server may receive a switch token when its state register has

been d-State, and it only replies with an echo and doesn’t send

the switch token to other servers again.

A (correct) server always initiates the switch protocol, once

it notices a trigger event and its state register is m-State. Even

when it is involved in instances of the switch protocol initiated

by other servers, it initiates the switch protocol. Otherwise, a

faulty server would request servers to sign a switch token and

does not send it to other servers, to prevent correct servers

from initiating the switch protocol and stop the running-state

switch.

E. Performance Analysis

We analyze the performance of GRADE, and this analysis

is confirmed by the experiments in Section V.

The detailed protocols are described in Appendix, and Fig-

ure 3 shows the sketch of the storage protocol and the switch

protocol. Firstly, it can be found that (a) compared with that in

m-State, each write operation in d-State needs one more round

of communications to sign the self-verifying copy, and (b) each

read operations in d-State needs qdr − qmr ≈ fm more copies

than that in m-State (i.e., the load5 of servers is improved in

m-State). So, GRADE has better performance when it is in

m-State. Secondly, the switch protocol is composed of only

two rounds of communications among servers, and the cost of

communication and computation is comparable to that of read

operations in GRADE.

IV. FAULTY CLIENT

As a storage system, GRADE cannot prevent a malicious

client which strictly follows the client protocol, from writing

erroneous values. However, GRADE needs to prevent faulty

5Given a quorum system, the load is the access probability of the busiest
quorum, minimized over all strategies [21].
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clients not strictly following the client protocol, from letting

the system in an in-consistent state.

The following faulty-client-tolerant (FCT) mechanisms are

designed in GRADE. Firstly, the mechanism of deriving a

timestamp from the corresponding write request [7] guarantees

that a faulty client cannot write different values with an

identical timestamp to servers.

Secondly, faulty clients might (conspire with faulty servers

to) execute a write operation on less than qmw servers in m-

State or less than qdw in d-State. For example, a faulty client

sends a write request to a faulty server, and the server writes

it to less than qmw servers. Then, faulty servers can conspire

to manipulate the copy to be returned in the subsequent

read operations. For example, when the copy with a higher

timestamp is written to only fm correct and fm faulty servers

in m-State, it is chosen as the right copy only if some faulty

server sends the copy to the delegate; otherwise, another copy

is chosen as the right one. The following mechanisms (similar

to those in [1, 7, 19]) are employed to prevent such conspiracy

attacks:

• On receiving a write request from delegates, a server in

m-State updates its local copy and forwards it to qmw−2
servers (not including the delegate and itself) if the copy

to be written has a higher timestamp than its own. It

guarantees that a write operation in m-State is executed

on (a) faulty servers only or (b) at least qmw servers if

some correct server is involved.

• Similarly, on receiving a write request from delegates,

a server in d-State updates its local copy and forwards

it to qdw − 2 servers (not including the delegate and

itself) if the self-verifying copy to be written has a higher

timestamp. It guarantees that a write operation in d-State

is executed on (a) faulty servers only or (b) at least qdw
servers.

Finally, a self-verifying copy in d-State could be chosen as

the right copy even if it is returned by only one (faulty) server,

so the write-back design [9, 19] is also needed: when partially

signing a read response in d-State and the right copy is a self-

verifying one, a server updates its local copy and writes it to

qdw − 2 servers (not including the delegate and itself) if the

right copy has a higher timestamp than its own. So, when a

self-verifying copy is returned to clients, it has been written

to some quorum of qdw servers.

V. IMPLEMENTATION AND EVALUATION

In this section, we present the prototype implementation of

GRADE and analyze the experiment results.

A. Prototype Implementation

The GRADE prototype consists of seven servers, tolerating

two faulty servers in d-State and one faulty server in m-State.

The 1024-bit RSA service key pair is shared based on Shoup’s

TSS [22]. Each server also holds a 1024-bit RSA key pair

for authenticated communications among servers, and every

client holds a 1024-bit RSA key pair to sign client requests.

A variable has a 32-bit unique identity and a 512-bit value.

TABLE II
THE EXECUTION TIME OF EACH OPERATION IN GRADE

FCT Operation Running-State Time (in ms)

Enabled Read m-State 146.80
d-State 160.45

Write m-State 160.30
d-State 298.00

Disabled Read m-State 146.25
d-State 159.15

Write m-State 151.15
d-State 286.95

- Switch - 94.70

Each timestamp is 192-bit, consisting of a 32-bit sequence

number and a 160-bit SHA-1 hash value.

Servers and clients communicate via UDP, using the pro-

tocols in Appendix. Besides, the following optimizations are

implemented in the prototype, not harming its correctness and

fault tolerance:

O1. A client firstly sends its request to only one server,

to reduce redundant computations and communications.

The request is sent to fd+1 servers periodically, only if

it doesn’t receive the signed response within a scheduled

period of time.

O2. For the read operations in m-State, a delegate can choose

the right copy even when it receives only qmr − fm =
2fm +1 copies. If a copy is returned by fm +1 servers

and has the highest timestamp, it is the right copy

no matter what are received from another fm servers6.

These 2fm+1 copies can also be used to convince other

servers to sign the read response.

B. Experiment

The prototype runs in a 100Mbps Ethernet. One client

sends requests to servers and receives signed responses. The

configuration of all servers and the client is Intel Pentium 4

(2.4GHz) CPU, 256MB RAM with Windows 2000 Server as

the operation system.

All servers and the client are correct in these experiments.

Table II shows the execution time of the storage protocol

and the switch protocol, and each result is the average of

20 operations. The result of each read (or write) operation

is measured on the client, starting when it sends the request

and ending when it receives the signed response. For each read

or write operation, the client sends only one request (i.e., the

signed response is returned before it sends the request to more

servers). In the read operations, the right copy in d-State is a

self-verifying one. The execution time of the switch protocol

is measured on the initiator, starting when it sends the token-

signing request and ending when it receives enough echoes.

The experiment results confirm the performance analysis in

Section III-E:

• Whether the FCT mechanisms are enabled or not, perfor-

mance of write operations is much better in m-State. The

6The similar optimization cannot be applied to the read operations in d-
State, because a self-verifying copy with the highest timestamp is the right
copy even if it is returned by the last server of qdr ones.
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execution time in d-State is about 1.88 times as that in m-

State, because one more round of communications among

servers and one more threshold signing computation are

needed.

• The performance improvement of read operations in m-

State is not so remarkable as that of write operations, and

the execution time in d-State is about 1.09 times as that

in m-State. In d-State, more servers are involved in a read

operation, and a self-verifying copy shall be verified by

servers using the service public key.

• The running-state switch is completed much faster than

a read (or write) operation. Compared with a read oper-

ations in m-State, the execution time is only 65%.

VI. RELATED WORK

The relaxation lattice method [13] was proposed to specify

graceful degradation (i.e., the degraded behaviors when the

environment changes) for several applications. D-GRAID [23]

implements graceful degradation in RAID arrays, to ensure

availability of as many frequently-used files as possible when

disks fail. A. Fox and E. Brewer [24] suggested to improve

availability by degrading completeness of responses in large-

scale services, in the presence of failures. BFT2F [25] provides

degraded consistency when there are more than f but not more

than 2f Byzantine faulty servers out of 3f + 1 servers, and

L. Zhou et al. extended the notion of linearizability to three

degraded semantics in state machine replication [26]. This

work investigates graceful degradation from a different view:

performance is degraded to tolerate more faulty servers when

the number of faulty servers is (suspected to be) greater than

the initial assumption.

Dynamic BQSs [27–29] reconfigure the number of faulty

servers that it tolerates (e.g., in a dissemination BQS consisting

of 3fd + 1 servers, the number can be any value between 1

and fd), to achieve dynamic fault tolerance and improve the

load of servers. However, they support only one fixed variation

of BQSs, and then the execution time of each read or write

operation is limitedly improved. Theoretically, this dynamic

design can work compatibly in GRADE, and then GRADE

servers run as different dynamic BQSs in each running-state.

COCA [7] and CODEX [8] integrate TSSs [17, 30] to sup-

port proactive recovery in dissemination BQSs. As mentioned

above, the running-state switch protocol of GRADE works

with proactive recovery to guarantee that the number of faulty

servers never breaks the assumption. BFT-BC [19] is another

protocol of dissemination BQSs, not integrating TSSs. A write

response of BFT-BC is appended with signatures from 2fd+1
servers that accept the write request, while a write response

of COCA is signed by fd + 1 servers based on TSSs, each

of which partially signs it after checking that 2fd + 1 servers

have accepted the write request. Similarly, each self-verifying

copy in BFT-BC is appended with 2fd+1 servers’ signatures,

while that in COCA is signed by fd+1 servers cooperatively.

Both of these protocols tolerate an arbitrary number of faulty

clients and fd faulty servers out of 3fd+1 ones. We adopt the

COCA protocol as the storage protocol of GRADE in d-State,

because TSSs are also needed in GRADE to achieve client

transparency.

HQ [18] supports two approaches to implement BFT state

machine replication: HQ employs a lightweight quorum-based

protocol to provide better performance when there is no

contention, and PBFT [15] is used to resolve contention when

it raises. GRADE shares the same spirit that the system

switches to different protocols for better performance as the

environment changes. However, two BQSs with different ca-

pacities of fault tolerance are supported in GRADE, while

HQ applies one BQS tolerating the same number of faulty

servers as PBFT (i.e., it supports two states with the same

fault tolerance).

We extend the preliminary work [31] of GRADE in three

ways at least: (a) the FCT mechanisms are discussed only

in this version, (b) the security analysis and the performance

evaluation are more comprehensive, and (c) the discussion

about credentials, switch tokens and trigger events is not

presented in [31].

VII. CONCLUSION AND FUTURE WORK

We present GRADE, a BFT distributed storage service,

which is capable of dynamically switching between two

different BQSs. GRADE provides higher performance in a

normal running-state, and degrades performance to maintain

high fault tolerance in emergency situations. The running-state

switch in GRADE is very efficient and scalable, because it

does not require any data conversion. The storage service is

not interrupted by the running-state switch. We present the

detailed protocols, and prove its security. Experimental results

show that GRADE provides a balance between performance

and fault tolerance.

With the first GRADE system being successfully imple-

mented, we plan to extend the framework in several directions.

We plan to support more different BQSs to provide fine-

grained performance and fault tolerance balances. We are also

investigating a more automatical and intelligent running-state

switch scheme, in which GRADE servers switch states based

on their evaluation of the environment risk; especially, servers

can switch back to m-States when the risk becomes low,

instead of waiting for a periodical proactive recovery.
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APPENDIX

In this appendix, the client protocol and the server protocol are
described in detail. The following notations are used:

• [m]SK : Message m signed cooperatively by servers using the
service private key.

• [m]c: Message m signed by client c.
• Si, Sd, Sa: A server, the delegate of the storage protocol, and

the initiator of the switch protocol.
• [m]i, [m]d, [m]a: Message m signed by Si, Sd and Sa.
• PSi(m): A partial signature for message m, generated by Si

using its service key share.
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A. Client Protocol

Read

1. To read x, c sends Req(R) = [Read, c, x, p]c to fd+1 servers,
where p is an ascending sequence number maintained by c.

2. c periodically sends Req(R) to the fd + 1 servers, until it
receives Resp(R) = [Copy, c, x, v, t, p]SK , where v is the
value and t is the timestamp.

Write

1. To write x, c firstly sends Req(R) to obtain Resp′(R) =
[Copy, c, x, v′, t′, p′]SK .

2. c sends Req(W ) = [Write, c, x, v, p, Resp′(R)]c to fd + 1
servers, where v is the new value to be written.

3. c periodically sends Req(W ) to the fd + 1 servers, until
it receives Resp(W ) = [Ack, c, x, tw, p]SK , where tw =
t′.seq|Hash(Req(W )).

B. Storage Protocol

Read in m-State

1. Sd sends [MRead, d, Req(R)]d to all servers, when it receives
Req(R) from c.

2. Si replies with [MCopy, i, [x, vi, ti], Req(R)]i, when it re-
ceives a MRead message from Sd, where [x, vi, ti] is the local
copy of x on Si.

3. Sd repeats Step-1 periodically, until it receives MCopy mes-
sages from qmr servers.

4. Sd chooses the right copy [x, v, t] out of the qmr ones and
sends [MSignRead, d, R̄espR,ΣMR, Req(R)]d to all servers,
where R̄espR = [Copy, c, x, v, t, p] and ΣMR is the collection
of qmr MCopy messages.

5. Si replies with [MPSRead, i, PSi(R̄espR), Req(R)]i, when it
receives a MSignRead message from Sd and checks that (a)
ΣMR are MCopy messages from qmr servers for Req(R) and
(b) R̄espR includes the right copy.

6. Sd repeats Step-4 periodically, until it receives partial signa-
tures from fd + 1 servers. Sd sends [Copy, c, x, v, p]SK to
c, after it combines the partial signatures into a signed read
response.

Write in m-State

1. Sd sends [MWrite, d, Req(W )]d to all servers, when it re-
ceives Req(W ) from c.

2. Si replies with [MAck, i, x, tw, Req(W )]i, when it re-
ceives a MWrite message from Sd, where tw =
t′.seq|Hash(Req(W )). Then, Si updates its local copy to
[x, v, tw] only if tw > ti.

3. Sd repeats Step-1 periodically, until it receives MAck messages
from qmw servers.

4. Sd sends [MSignWrite, d, R̄espW ,ΣMW , Req(W )]d to all
servers, where R̄espW = [Ack, c, x, tw, p] and ΣMW is the
collection of of qmw MAck messages.

5. Si replies with [MPSWrite, i, PSi(R̄espW ), Req(W )]i,
when it receives a MSignWrite message from Sd and checks
that ΣMW are MAck messages from qmw servers for Req(W ).

6. Sd repeats Step-4 periodically, until it receives partial signa-
tures from fd + 1 servers. Sd sends [Ack, c, x, tw, p]SK to
c, after it combines the partial signatures into a signed write
response.

Read in d-State

1. Sd sends [DRead, d, Req(R)]d to all servers, when it receives
Req(R) from c.

2. Si replies with [DCopy, i, Copyi(x), Req(R)]i, when it re-
ceives a DRead message from Sd, where Copyi(x) is the
local copy of x on Si and it can be [x, vi, ti]SK or [x, vi, ti].

3. Sd repeats Step-1 periodically, until it receives DCopy mes-
sages from qdr servers.

C1. If there is no self-verifying copy, the right copy is the
one returned by fd + fm + 1 servers.

C1. If there are not-less-than fd + 1 self-verifying copies,
the right copy is the self-verifying one with the highest
timestamp.

C3. Otherwise, Sd repeats Step-1 periodically, until C1 or C2
happens.

4. Sd chooses the right copy [x, v, t] and sends
[DSignRead, d, R̄espR,ΣDR, Req(R)]d to all servers,
where ΣDR is the collection of qdr DCopy messages
containing (a) the fd+fm+1 identical generic copies and no
self-verifying copy or (b) at least fd +1 self-verifying copies.

5. Si replies with [DPSRead, i, PSi(R̄espR), Req(R)]i, when it
receives a DSignRead message from Sd and checks that (a)
ΣDR are DCopy messages from qdr servers for Req(R) and
(b) R̄espR includes the right copy.

6. Sd repeats Step-4 periodically, until it receives partial signa-
tures from fd+1 servers. Sd sends [Copy, c, x, v, t, p]SK to c,
after it combines the partial signatures into a signed response.

Write in d-State

1. Sd sends [DSignData, d, Req(W )]d to all servers, when it
receives Req(W ) from c.

2. Si replies with [DPSData, i, PSi(x, v, tw), Req(W )]i, when
it receives a DSignData message from Sd.

3. Sd repeats Step-1 periodically, until it receives partial signa-
tures from fd + 1 servers and combines the partial signatures
into a self-verifying copy [x, v, tw]SK .

4. Sd sends [DWrite, d, [x, v, tw]SK ]d to all servers.
5. Si replies with [DAck, i, x, tw, Req(W )]i, when it receives a

DWrite message from Sd. Then, Si updates its local copy to
[x, v, tw]SK only if tw > ti.

6. Sd repeats Step-4 periodically, until it receives DAck messages
from qdw servers.

7. Sd sends [DSignWrite, d, R̄espW ,ΣDW , Req(W )]d to all
servers, where ΣDW is the collection of of qdw DAck mes-
sages.

8. Si replies with [DPSWrite, i, PSi(R̄espW ), Req(W )]i,
when it receives a DSignWrite message from Sd and checks
that ΣDW are DAck messages from qdw servers for Req(W ).

9. Sd repeats Step-7 periodically, until it receives partial signa-
tures from fd + 1 servers. Sd sends [Ack, c, x, tw, p]SK to c,
after it combines the partial signatures into a signed response.

C. Switch Protocol

1. Sa sends [GSignToken, a, [SToken, et, sid], cred]a to all
servers, where cred is the credential authorizing the running-
state switch, et is the expiration time of the switch token, and
sid = Hash(cred, et) is the identifier of this switch.

2. Si replies with [GPSToken, i, PSi(SToken, et, sid), sid]i,
when it receives a GSignToken message from Sd.

3. Sa repeats Step-1 periodically, until it receives partial signa-
tures from fd + 1 servers and combines the partial signatures
into a signed switch token.

4. Sa sends [GSwitch, a, [SToken, et, sid]SK ]a to all servers.
5. Si replies with [GEcho, i, sid]i and sets its state register to

d-State, when it receives a GSwitch message from Sa.
6. Sa repeats Step-4 periodically, until it receives GEcho mes-

sages from n− fm servers.
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