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Abstract. As the hardware root-of-trust in a trusted computing envi-
ronment, the Trusted Platform Module (TPM) warrants formal specifi-
cation and verification. This work presents results of an effort to specify
and verify an abstract TPM 1.2 model using PVS that is useful for un-
derstanding the TPM and verifying protocols that utilize it. TPM com-
mands are specified as state transformations and sequenced to represent
protocols using a state monad. Postconditions and invariants are spec-
ified for individual commands and validated by verifying a Privacy CA
attestation protocol. All specifications are written and verified automat-
ically using the PVS decision procedures and rewriting system.

1 Introduction

At the heart of trusted computing [3] is the need to appraise a remote system
in a trusted fashion. In this process – known as remote attestation [4, 5, 11] –
an external appraiser sends an attestation request to an appraisal target and
receives a quote used to assess the remote system’s state. To achieve its goal,
the appraiser must not only analyze the quote’s contents, but also assess the
trustworthiness of the information it contains.

The Trusted Platform Module (TPM) and its associated Trusted Software
Stack (TSS) [1] provide core functionality for assembling and delivering a quote
for appraisal with high integrity as well as binding confidential data to a specific
platform. However, neither the TPM nor TSS have been formally specified or
verified. Definitions of the over 90 current TPM commands as well as additional
TSS commands are embedded in more than 700 pages of English documentation.

We formally specify and verify a remote attestation protocol – known as the
Privacy CA Protocol – using commands from TPM version 1.2. Our objective is
to capture an abstract specification from the TPM specification, validate it, and
use it to verify the correctness of the Privacy CA Protocol. We are not making
an argument for the protocol itself, we are merely verifying this protocol as a
part of verifying the TPM. We use PVS [14] for our work, however the results
and approach generalize to other tools.
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1.1 Trusted Platform Module

The Trusted Platform Module (TPM) [1] is a hardware co-processor that pro-
vides cryptographic functions at the heart of establishing and maintaining a
trusted computing infrastructure [3]. The TPM’s functionality can be distilled
into three major capabilities: (i) establishing, maintaining, and protecting a
unique identifier; (ii) storing and securely reporting system measurements; and
(iii) binding secrets to a specific platform.

The endorsement key (EK) and storage root key (SRK) are persistent asym-
metric keys maintained by the TPM. EK uniquely identifies the TPM and EK−1

is maintained confidentially while EK encrypts secrets for use by TPM. EK−1

could theoretically sign TPM data, but is never used for this purpose to avoid
unintended information aggregation. Instead, it provides a root-of-trust for re-
porting used in the attestation process. The SRK provides a root key for chaining
wrapped keys. A wrapped key is an asymmetric key pair whose private key is en-
crypted by another asymmetric key. The resulting wrapped key can be safely
stored outside the TPM and may only be installed and used if its wrapping key
is installed. Using the SRK as the root of these chains binds information to its
associated TPM.

A platform configuration register (PCR) is a special purpose register for
storing and extending hashes within the TPM. As its name implies, a PCR
records a platform’s configuration during boot or at run time. The TPM ensures
the integrity of PCRs and uses a quote mechanism to deliver them with integrity
to an external appraiser. Rather than being set to a specific value, PCRs are
extended using the formula pcr ‖ h = SHA1(pcr ++h). These hashes – called
measurements – are gathered in PCRs at various points during system operation,
but the most common use is to ensure trusted boot. As each system component
boots, images and data are hashed, and each hash is used to extend a PCR.
The nature of extension implies that at the conclusion of the boot process,
the hashes in PCRs indicate whether the right parts were used in the right
order during boot. Specifically, ideal PCR extension exhibits the property that
h0 ‖ h1 = h1 ‖ h0 ⇔ h0 = h1. The only way to change a PCR value is with a
platform reboot or by using the command TPM_Extend.

1.2 Privacy CA Protocol

Remote Attestation using a TPM is the process of gathering PCRs and delivering
them to an external appraiser in a trusted fashion [9]. By examining the reported
contents of PCRs, the appraiser can determine whether it trusts the system
described. Using hashes guarantees the appraiser only learns whether the right
system is running and nothing more. Our remote attestation method is to use
a Privacy Certificate Authority (CA or Privacy CA) that produces an identity
certificate verifying that an attestation identity key (AIK) public key belongs to
a certain TPM using its EK. The Privacy CA is so named because it protects
the EK while assuring the AIK belongs to the right EK. This protocol is shown
in figure 1.



An AIK, wrapped by the SRK, is created using the TPM’s TPM_MakeIdentity
command and can only be used by the TPM that generated it. The command
also returns a CA label digest identifying the CA certifying the AIK, and the
public AIK signed with AIK−1. The AIK signature tells us that the AIK came
from the right TPM since the TPM that generated the AIK is the only entity
with access to its private key. Using the public key embedded in the certificate,
the CA can determine if the entire certificate did indeed come from the TPM
associated with the AIK.

Although we are modeling the TPM, we also need to model the role of
the Privacy CA. This interaction between the CA and the User is modeled
by CA_certify. The CA returns a session key (identified as K with figure 1)
encrypted by the public EK associated with the TPM that claims to have re-
quested the certificate. TPM_ActivateIdentity attempts to decrypt K using the
TPM’s EK−1 and releases if it decrypts successfully. Finally, we are able to use
the AIK to sign PCR values using the TPM command TPM_Quote [1]. This quote
is returned to the User who can then send back to the appraiser the information
that it needs. The command CPU_BuildQuoteFromMemory simulates this final
step generating for the appraiser an evidence package of the form:

({|{|AIK|}CA−1 |}AIK−1 , {|n, PCR|}AIK−1) (1)

where: {|n, PCR|}AIK−1 is the nonce from the appraiser’s request and desired
PCR values; {|{|AIK|}CA−1 |}AIK−1 is the certificate from a Privacy CA and
public AIK; and both are signed by the AIK.

2 System Model

The overall approach we take for verifying the TPM is to establish a weak bisim-
ulation [17] relation between an abstract requirements model and a concrete
model derived from the TPM specification. Both the abstract and concrete mod-
els define transition systems in terms of system state and transitions over that
system state. Here we address only the abstract model, useful in its own right
for modeling protocols and verifying operations. Here we describe our abstract
model of the TPM, including data structures and command execution.

2.1 Data Model

Our abstraction of data relevant to the TPM is defined in the PVS data type
tpmData. Figure 2 shows a subset of this data that is relevant to verifying the
remote attestation protocol. It may be noted that most elements of our tpmData
data type include a tag that shows what cryptographic operations have been
performed on data using the CRYPTOSTATUS type. These functions include en-
cryption, signing, and sealing. For example, a symmetric key identified as k:KVAL
and signed with the private key of idKey:(tpmKey?) is expressed as:

tpmSessKey(k, signed(private(idKey), clear))
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Fig. 1. Sequence diagram for the Privacy CA protocol.

tpmData : DATATYPE

BEGIN

tpmDigest(digest:list[tpmData],crs:CRYPTOSTATUS) : tpmDigest?

tpmNonce : tpmNonce?

tpmSessKey(skey:KVAL,crs:CRYPTOSTATUS) : tpmSessKey?

tpmKey(key:KVAL,usage:KEY_USAGE,flags:KEY_FLAGS,PCRInfo:list[PCR],

wrappingKey:KVAL,crs:CRYPTOSTATUS) : tpmKey?

tpmQuote(digest:list[PCR],nonce:(tpmNonce?),crs:CRYPTOSTATUS) : tpmQuote?

tpmIdContents(digest:(tpmDigest?),aik:(tpmKey?),

crs:CRYPTOSTATUS) : tpmIdContents?

tpmAsymCAContents(sessK:(tpmSessKey?),idDigest:(tpmDigest?),

crs:CRYPTOSTATUS) : tpmAsymCAContents?

...

END tpmData;

Fig. 2. Data structure for abstract TPM data.



A tpmDigest structure contains the list of things that are concatenated
and then hashed to create the digest value – SHA1(d0 ++ d1 ++ ... ++ dn) while
tpmSessKey is our representation of a symmetric key. Finally, the tpmKey struc-
ture represents an asymmetric key with additional properties used by the TPM.
These include its usage, associated flags, and PCR information for wrapping.
Virtually all asymmetric keys used by the TPM are created as wrapped keys.
Thus, a reference to the wrapping key is part of the tpmKey structure. The type
KVAL associated with all keys is an integer value that uniquely identifies the key.

2.2 Abstract State

The TPM manages state by maintaining several data fields and flags. We use
a PVS record structure, referred to as tpmAbsState and shown in figure 3, to
maintain an abstract view of this state as well as the memory associated with the
environment where the TPM is being run. Elements key to the remote attestation
protocol include srk, ek, pcrs, and memory.

tpmAbsState : TYPE =

[# restore : restoreStateData, memory : mem, srk : (tpmKey?),

ek : (tpmKey?), keyGenCnt : K, keys : KEYSET, pcrs : PCRS,

locality : LOCALITY, permFlags : PermFlags, permData : PermData #];

Fig. 3. Abstract TPM and system state record data structure.

The srk and the ek represent the asymmetric keys SRK and EK used by the
TPM as roots of trust previously discussed in section 1.1. memory is not part of
the actual TPM, but represents the memory used by the TPMs environment for
storing values. This is necessary for our model due to our method of command
sequencing discussed in section 2.6.

pcrs is an array of hash sequences that define the value of a PCR. Rather
than calculate the hash, a sequence of values used to create the PCR value is
maintained. One unusual feature of PCRs is they can have one of two initial
values. Resettable PCRs initialize to -1 (all 1s) while non-resettable PCRs reset
to 0. This feature along together with PCR locality is used by the appraiser
determine if the senter command is called during boot.

2.3 Abstract Command Definitions

Figure 4 shows the PVS data type tpmAbsInput that represents the abstract
syntax of the TPM command set. Each TPM_Command will have a corresponding
ABS_Command in the tpmAbsInput data structure. This approach gives us an
induction principle for the command set automatically usable by PVS to quantify
over all possible TPM inputs.



tpmAbsInput : DATATYPE

BEGIN

ABS_MakeIdentity(CADigest:(tpmDigest?),aikParams:(tpmKey?))

: ABS_MakeIdentity?

ABS_ActivateIdentity(aik:(tpmKey?),blob:(tpmAsymCAContents?))

: ABS_ActivateIdentity?

ABS_Extend(pcrNum:PCRINDEX,d:HV) : ABS_Extend?

ABS_Quote(aik:(tpmKey?),nonce:(tpmNonce?),pm:PCRMASK) : ABS_Quote?

ABS_certify(aik:(tpmKey?),certReq:(tpmIdContents?)) : ABS_certify?

ABS_save(i:nat,v:tpmAbsOutput) : ABS_save?

ABS_read(i:nat) : ABS_read?

...

END tpmAbsInput;

Fig. 4. Representative elements from the TPM command data type.

Within the tpmAbsInput data structure, the arguments to each command are
abstract representations of the actual TPM data formats and come from tpmData

data type. This is appropriate for an abstract model such as ours where we are
capturing functionality, not implementation. Some details are abstracted away
when they do not contribute to verifying the basic functionality of the device.

2.4 Abstract Outputs

Like inputs to the TPM, outputs are modeled abstractly using an algebraic type.
Again we avoid the complexity of bit-level representations specified in the TPM
standard in favor of an abstract representation that captures the essence of TPM
functionality. Figure 5 shows the representation of this type.

Each TPM command returns an output, often just to return the message
that the command was successfully run. The tpmAbsOutput constructs allow for
each command to return the correct output parameters as well as a return code.
These return codes either indicate success or a non-fatal error. Fatal errors from
TPM commands are generated using the OUT_Error construct, while non-TPM-
related fatal errors are generated using OUT_CPUError.

2.5 Abstract Command Execution

The technique for specifying TPM command execution is to define state transi-
tion and output functions in the canonical fashion for transition systems. Specif-
ically, we define the executeCom function as a transition from tpmAbsState

(figure 3) and tpmAbsInput (figure 4) to tpmAbsState:

executeCom : tpmAbsState → tpmInput → tpmAbsState

and the function outputCom to transform tmpAbsState and tpmAbsInput into
a tpmAbsOutput (figure 5) value:



tpmAbsOutput : DATATYPE

BEGIN

OUT_MakeIdentity(aik:(tpmKey?),idc:(tpmIdContents?),m:ReturnCode)

: OUT_MakeIdentity?

OUT_ActivateIdentity(symmKey:(tpmSessKey?),m:ReturnCode)

: OUT_ActivateIdentity?

OUT_Extend(outDigest:PCR,m:ReturnCode) : OUT_Extend?

OUT_Quote(pcrData:list[PCR],sig:(tpmQuote?),m:ReturnCode) : OUT_Quote?

OUT_FullQuote(q:(tpmQuote?),idc:(tpmIdContents?),m:cpuReturn)

: OUT_FullQuote?

OUT_Certify(data:(tpmAsymCAContents?),m:cpuReturn) : OUT_Certify?

OUT_Error(m:ReturnCode) : OUT_Error?

OUT_CPUError(m:cpuReturn) : OUT_CPUError?

...

END tpmAbsOutput;

Fig. 5. Abstract TPM output record data structure.

outputCom : tpmAbsState → tpmAbsInput → tpmAbsOutput

Given s : tpmAbsState and c : tpmAbsInput, the output, state pair resulting
from executing c is defined as:

(outputCom(s, c), executeCom(s, c))

As one would expect, executeCom and outputCom are defined by cases over
tpmAbsInput. Specifically, for each command in tpmAbsInput a function is de-
fined for generating the next state and for generating output. These commands
are named within the specification using the suffix State and Out respectively
for easy identification.

For example, consider the ABS_MakeIdentity input. At its core, the com-
mand TPM_MakeIdentity creates the AIK and returns the public AIK key for use
in other operations as well as a tpmIdContents structure. This tpmIdContents
structure, containing the identity of the privacy CA that the owner expects to
certify the AIK and the AIK (see figure 5 for the OUT_MakeIdentity structure
and figure 2 for the tpmIdContents structure), is signed by the private AIK [1].

The function makeIdentityState defines how the TPM state is modified (a
new key value for the AIK is created):

makeIdentityState(s:tpmAbsState,CADigest:(tpmDigest?),

aikParams:(tpmKey?)) : tpmAbsState =

IF identity?(keyUsage(aikParams))

AND not(migratable(keyFlags(aikParams)))

THEN s WITH [‘keyGenCnt := keyGenCnt(s)+1]

ELSE s

ENDIF;



while, the function makeIdentityOut defines the TPM output generated by the
command:

makeIdentityOut(s:tpmAbsState,CADigest:(tpmDigest?),

aikParams:(tpmKey?)) : tpmAbsOutput =

IF identity?(keyUsage(aikParams))

AND not(migratable(keyFlags(aikParams)))

THEN LET aik:(tpmKey?) = tpmKey(keyGenCnt(s), keyUsage(aikParams),

keyFlags(aikParams), pcrs(s),

wrappingKey(srk(s)),clear) IN

LET idBinding = tpmIdContents(CADigest, aik,

signed(private(aik),clear)) IN

OUT_MakeIdentity(aik,idBinding,TPM_SUCCESS)

ELSE OUT_Error(TPM_INVALID_KEYUSAGE)

ENDIF;

Functions like makeIdentityState and makeIdentityOut define the func-
tionality associated with ABS_MakeIdentity. They are associated with the com-
mand in the executeCom and outputCom using a case structure defined over
tpmAbsInput. Since all TPM commands return at least a success or error mes-
sage, all abstract commands generate output, but not all commands modify
state. In instances where the state is not modified, the CASES construct used to
assemble the functions defaults to not modifying the state.

2.6 Sequencing Command Execution

TPM commands are executed in sequence like assembly commands in a tra-
ditional microprocessor. To validate the abstract model as well as verify TPM
protocols, a mechanism must be chosen to sequence command execution. Such
sequencing of TPM commands is a matter of using the output state from one
command as the input to the next command. The classical mechanism for doing
this involves executing a command and manually feeding its resulting state to
the next command in sequence. Using a LET form, to execute i;i’ would look
like the following:

LET (o’,s’) = (outputCom(s,i),executeCom(s,i)) IN

(outputCom(s’,i’),executeCom(s’,i’))

We choose to use an alternative approach that uses a state monad [13, 18] to
model sequential execution. The state monad threads the state through sequen-
tial execution in the background. The result is a modeling and execution pattern
that closely resembles the execution pattern of TPM commands. Within PVS,
we defined a state monad that gives us the traditional bind (>>=) and sequence
(>>) operations. Examples of sequence and bind can be seen in figure 8.

3 Verification Results

To verify our requirements model we verify individual commands with respect
to their postconditions and invariants. To provide a degree of validation, we use



those commands to model protocols and verify execution results. Some aspects of
attacks are considered, but there is no attempt to be comprehensive at this time.
We also assume the hash function is perfect, giving the property SHA1(b0) =
SHA1(b1) ⇔ b0 = b1. This and the constructive specification of the PCRS type
gives us the important property that bad hashes or bad extension ordering is
detectable in the PCR value.

3.1 Verifying Individual Commands

In order to prove the validity of our abstract TPM model, we define and verify
postconditions and invariants for each TPM command and verify that our ab-
stract specifications meet those properties. We consider only partial correctness
in the abstract model, as termination is meaningless at this level.

For each command, we must show that given any value for all parameters of
a command, running that command produces an output, state pair that satisfies
the postcondition while not violating any invariant. Note that we do not address
preconditions, as TPM output for every command and for each state must be
defined, therefore preconditions are always trivial. Returning to our example
of the TPM_MakeIdentity command, we verify the postconditions of command
execution with the theorem shown in figure 6.

make_identity_post: THEOREM

FORALL (state:(afterStartup?),CADigest:(tpmDigest?),aikParams:(tpmKey?)):

LET (a,s)=runState(TPM_MakeIdentity(CADigest,aikParams))(state) IN

LET waik:(tpmKey?)=tpmKey(state‘keyGenCnt, keyUsage(aikParams),

keyFlags(aikParams), state‘pcrs,

state‘srk‘wrappingKey, clear) IN

LET idBind=tpmIdContents(CADigest,waik,

signed(private(waik),clear)) IN

IF identity?(keyUsage(aikParams))

AND not(migratable(keyFlags(aikParams)))

THEN a=OUT_MakeIdentity(waik,idBind,TPM_SUCCESS) AND

s=state WITH [‘keyGenCnt := keyGenCnt(state)+1]

ELSE a=OUT_Error(TPM_INVALID_KEYUSAGE) AND

s=state

ENDIF;

Fig. 6. Verifying postconditions of TPM MakeIdentity.

The LET form runs the command starting from any state in the predicate
subtype (afterStartup?). This predicate ensures that the state is any valid
tpmAbsState after the initialization commands have been run. The remainder
of the theorem defines conditions on proper execution of TPM_MakeIdentity

including both error and success cases.



State Field (Invariant) Abstract Commands That Change Field

restore ABS_Startup, ABS_Init, ABS_SaveState

memory ABS_Startup, ABS_Init, ABS_save

srk ABS_Startup, ABS_Init, ABS_TakeOwnership

ek ABS_Startup, ABS_Init, ABS_CreateEndorsementKeyPair,
ABS_CreateRevocableEK, ABS_RevokeTrust

keyGenCtr ABS_Startup, ABS_Init, ABS_LoadKey2, ABS_CreateWrapKey
ABS_MakeIdentity, ABS_certify

keys ABS_Startup, ABS_Init, ABS_LoadKey2, ABS_ActivateIdentity
ABS_OwnerClear, ABS_ForceClear, ABS_RevokeTrust

pcrs ABS_Startup, ABS_Init, ABS_Extend
ABS_sinit, ABS_senter

locality ABS_Startup, ABS_Init

permFlags ABS_Startup, ABS_Init, ABS_DisableOwnerClear,
ABS_ForceClear, ABS_OwnerClear, ABS_TakeOwnership,
ABS_CreateEndorsementKeyPair, ABS_CreateRevocableEK,
ABS_RevokeTrust

permData ABS_Startup, ABS_Init, ABS_CreateRevocableEK

Table 1. Invariant fields from tpmAbsState.

In addition to defining and verifying postconditions of each TPM command,
we also verify that properties that we want to remain invariant over command ex-
ecution. Invariants in the model take two forms – those that are explicitly defined
and those that are captured in the abstract state type definitions. As was previ-
ously mentioned, the only way to change a PCR value is by rebooting the plat-
form or using the TPM_Extend command. We can prove that this property holds
in our model. With the following theorem, we show that along with ABS_Extend,
the startup (after reboot) commands – ABS_Startup and ABS_Init, ABS_sinit
and ABS_senter – are the only commands that change the state field pcrs:

pcrs_unchanged: THEOREM

FORALL (s:tpmAbsState,c:tpmAbsInput) :

not(ABS_Startup?(c) OR ABS_Init?(c) OR

ABS_senter?(c) OR ABS_sinit?(c) OR

ABS_Extend?(c)) =>

pcrs(s) = pcrs(executeCom(s,c));

Note that while postconditions are associated with individual commands,
invariants are typically proven over all commands simultaneously using the in-
duction principle associated with the tpmAbsInput structure. The previous in-
variant is an example of one such theorem – note the universally quantified
variable c : tpmAbsInput in the theorem signature.

The ABS_Startup and ABS_Init commands set up standard initial states
following the startup command and hardware initialization, respectively. They
reset all fields within tpmAbsState and are exceptions to most invariants. A list
of invariants and the commands that modify them are shown in Table 1.



make_and_activate_identity: THEOREM

FORALL (state:(afterStartup?),caDigest:(tpmDigest?),aikParams:(tpmKey?)):

LET (a,s)=runState(

TPM_MakeIdentity(caDigest,aikParams)

>>= CPU_saveOutput(0)

>>= (LAMBDA (a:tpmAbsOutput) :

CASES a OF

OUT_MakeIdentity(aik,idBind,m) : CA_certify(aik,idBind)

ELSE TPM_Noop(a)

ENDCASES)

>>= CPU_saveOutput(1)

>>= (LAMBDA (a:tpmAbsOutput) :

CASES a OF

OUT_Certify(data,m) : TPM_ActivateIdentity(aikParams,data)

ELSE TPM_Noop(a)

ENDCASES))

(state) IN

identity?(keyUsage(aikParams)) AND not(migratable(keyFlags(aikParams)))

AND private(aikParams)=key(idKey(memory(s)(0)))

AND caDigest=idBinding(memory(s)(0)) =>

a=OUT_ActivateIdentity(sessK(data(memory(s)(1))),TPM_SUCCESS)

AND s=state WITH [‘keyGenCnt:=keyGenCnt(state)+2]

Fig. 7. Protocol used to verify AIK support.

Possible invariants on the abstract state are captured in the subtype defined
by the wellFormed? predicate. Specifically, the definition of instruction execu-
tion maps a state of type (wellFormed?) to another state of type (wellFormed?).
Conditions in the wellFormed? predicate include basic structural properties
such as the integrity of data for restoring TPM state that will automatically
be checked during type checking.

Verifying protocols involves using the state monad to sequence command
execution to perform more complex tasks. Before a quote can be generated,
the TPM internally creates an AIK. The public AIK is certified by a trusted
Certificate Authority (CA) [16] . The protocol for generating and certifying this
AIK is shown in figure 7. The function runState runs the monad by calling it
on the initial state.

The use of bind (>>=) and lambda constructs allows one instruction to con-
sume the output of the previous instruction. For example, CA_Certify uses the
output of TPM_MakeIdentity after it is stored in memory for later use. The use
of CASE constructs accounts for the possibility that the previous output is not
of the correct type. We are working on mechanisms for eliminating this, thereby
cleaning up the protocol representation.

The conditions for proper execution of this sequence of commands involve
conditions for proper execution of the commands individually. For example, no-
tice the conditions that the key be non-migratable and an identity key were



previously seen when discussing the verification of the single TPM_MakeIdentity
command. The additional conditions in the antecedent are necessary to verify
the memory was stored correctly within the tpmAbsState. In the consequent, we
ensure that the output bound to a and the state bound to s correspond with the
postconditions of TPM_ActivateIdentity, since it is the last command in the
sequence. However, in doing so, we know that in order for these postconditions
to be met, the previous commands were correctly executed.

3.2 Verifying Privacy CA Protocol

We are now ready to put all the moving parts together and verify the Privacy CA
protocol. The PVS representation of the protocol from figure 1 that generates
the output in equation 1 is shown in figure 8. To verify protocol execution, we
first ensure that for all inputs the output bound by the LET form to a is the
quote defined in equation 1 and that the state bound to s is the correct state
following execution. This tells us the protocol generates the right output.

A collection of additional theorems verify detection of replay attacks, spoofed
quotes and nonces, and bad signatures. For example, we can show that a bad
nonce indicating potential replay is detectable in the quote:

bad_nonce: THEOREM

FORALL (s:tpmAbsState,k:(tpmKey?), n1,n2:(tpmNonce?), pm:PCRMASK) :

n1/=n2 =>

runState(TPM_Quote(k,n1,pm))(s) /=

runState(TPM_Quote(k,n2,pm))(s);

Additionally, we confirm that a bad AIK results in a bad quote recognizable in
the quote returned by the protocol:

bad_signing_key: THEOREM

FORALL (s:(afterStartup?),n:(tpmNonce?),pm:PCRMASK,k0,k1:(tpmKey?)) :

LET (a0,s0)=runState(TPM_Quote(k0,n,pm))(s),

(a1,s1)=runState(TPM_Quote(k1,n,pm))(s) IN

private(k0)/=private(k1) =>

a0/=a1;

These and similarly formed theorems verify that: (i) bad nonces, AIK sig-
natures and PCR values are detectable; (ii) PCRs record measurement order as
well as values; and (iii) senter was called to initiate the secure session. These
are not properties of individual commands, but of the protocol run’s output.

4 Related Work

Most verification work involving the TPM examines systems that use the TPM
API [12, 6], not the command set itself. Noteworthy exceptions are works by De-
laune et. al. [8, 7] and Gürgens et. al. [10]. Delaune’s work examines properties



cert_and_quote_with_prev_key : THEOREM

FORALL (state:(afterStartup?),n:(tpmNonce?),pm:PCRMASK,idKey:(tpmKey?),

caDig:(tpmDigest?)) :

LET (a,s)=runState(

TPM_MakeIdentity(caDig,idKey)

>>= CPU_saveOutput(0)

>>= (LAMBDA (a:tpmAbsOutput) :

CASES a OF

OUT_MakeIdentity(aik,idBind,m) :

CA_certify(aik,idBind)

ELSE TPM_Noop(a)

ENDCASES)

>>= (LAMBDA (a:tpmAbsOutput) :

CASES a OF

OUT_Certify(data,m) :

TPM_ActivateIdentity(idKey,data)

ELSE TPM_Noop(a)

ENDCASES)

>> CPU_read(0)

>>= (LAMBDA (a:tpmAbsOutput) :

CASES a OF

OUT_MakeIdentity(aik,idBind,m) :

TPM_Quote(aik,n,pm)

ELSE TPM_Noop(a)

ENDCASES)

>>= CPU_saveOutput(2)

>> CPU_BuildQuoteFromMem(2,0))

(state) IN

identity?(keyUsage(aikParams))

AND not(migratable(keyFlags(aikParams)))

AND OUT_MakeIdentity?(memory(s)(0))

AND OUT_Quote?(memory(s)(2))

AND private(idKey)=key(idKey(memory(s)(0)))

AND caDig=idBinding(memory(s)(0)) =>

LET pcrs=getPCRs(s‘pcrs,pm) IN

a=OUT_FullQuote(tpmQuote(pcrs,n,signed(private(idKey),clear)),

tpmIdContents(caDig,idKey,signed(private(idKey),clear)),

CPU_SUCCESS);

Fig. 8. Protocol used to generate full quote for an external appraiser.



of functions performed within the TPM using ProVerif for their analysis. While
we are attempting to develop an abstract requirements model for the TPM,
they focus on verifying cryptographic properties of TPM functions. Their work
deals with verifying authentication [8] where they examine a command subset re-
sponsible for authentication. Two major differences are their inclusion of session
management commands and their decision not to explicitly model state change.
We have chosen to defer session management thus far and explicitly model state
change using the state monad described earlier. In their analysis of Microsoft
Bitlocker and the envelope protocol [7], they include an attacker while we are
looking at functional correctness. These distinctions aside, the abstractions they
choose are quite similar to ours even though we are working in higher-order
logic in contrast to their use of horn clauses. This is encouraging and suggests
that developing a common TPM requirements model may be feasible. It is also
worth mentioning here that Ryan’s unpublished work [15] is an excellent general
introduction to the TPM and its use.

Gürgens and colleagues [10] develop a TPM model using asynchronous prod-
uct automata (APA) and analyze models using the SH-Verification Tool (SHVT).
Their work shares several protocols of interest with ours – secure boot, secure
storage, remote attestation, and data migration – with only remote attestation
being described in detail. Like our work they analyze interaction with a Pri-
vacy CA, but unlike our work and similar to Delaune, Gürgens includes various
kinds of attackers in examining the protocol. Considering multiple attackers
with multiple intents is the most interesting contribution of this work. By using
a automata model, Gürgens also models state transition explicitly as we do, in
contrast with Delaune.

5 Conclusions and Future Work

We have successfully verified about 40% of the TPM command set and the CA
Protocol using TPM commands. As the TPM currently has no other formal
verification, this is an important step to ensuring the validity of the TPM and
its commands. Our CA Protocol steps through the role of the TPM in remote
attestation and proves that the commands return what they are intended to
return. Additional theorems verify invariants, postconditions, and detectability
of various attacks. All models defined in this paper are available through the
authors.

Immediate plans are continuing to specify the abstract TPM model while
starting on the concrete model and bisimulation specification. In the abstract
model, we are focusing now on data migration among TPMs and on direct anony-
mous attestation (DAA) [2] protocols while continuing to verify the full TPM
command set. We also plan to extend our work to include virtual TPMs.
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