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ABSTRACT
With the development of information technology, online so-
cial networks grow dramatically. They now play a significant
role in people’s social life, especially for the younger gener-
ation. While huge amount of information is available in on-
line social networks, privacy concerns arise. Among various
privacy protection proposals, the notions of privacy as con-
trol and information boundary have been introduced. Com-
mercial social networking sites have adopted the concept to
implement mechanisms such as Google circles and Facebook
custom lists. However, the functions are not widely accepted
by the users, partly because it is tedious and labor-intensive
to manually assign friends into circles.

In this paper, we introduce a social circle discovery ap-
proach using multi-view clustering. First, we present our
observations on the key features of social circles: friendship
links, content similarity and social interactions. We propose
a one-side co-trained spectral clustering algorithm, which is
tailored for the sparse nature of social network data. We
also propose two evaluation measurements. One is based on
quantitative similarity measures, while the other employs
human evaluators to examine pairs of users selected by the
max-risk evaluation approach. We evaluate our approach
on ego networks of twitter users, and compare the proposed
technique with single-view clustering and original co-trained
spectral clustering techniques. Results show that multi-view
clustering is more accurate for social circle detection; and
our proposed approach gains significantly higher similarity
ratio than the original multi-view clustering approach.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Clustering
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1. INTRODUCTION
Online social networks are becoming extremely popular,

attracting huge amounts of users and Internet traffic. For
instance, Facebook recorded one billion active user accounts
in late 2012, while approximately 10 million messages are
posted every hour. They have significantly changed our
information sharing and socialization behavior, especially
among the younger generation – it has been reported that
48% percent of Facebook users between 18-34 years old check
Facebook when they wake up1.

The extreme popularity of online social networks has be-
come a double-edged sword. While service providers de-
vote to promote online socialization, privacy issues arise.
In the literature, studies have shown a massive disconnec-
tion between users’ privacy perceptions and their behav-
iors – widely known as the privacy paradox. That is, most
users do not take appropriate actions to protect their infor-
mation, although they express concerns on the privacy of
such information [24, 3, 34]. For instance, many users are
concerned about their location privacy [20, 7], however, a
blog/micro-blog post about a local restaurant [25], or blogs
with location-indicating words such as “Time Square” [10,
8] could effectively reveal the user’s location. The user-
centered privacy and HCI research community has intro-
duced the notion of restricted access and limited control [11,
42] and information boundaries [38]. In particular, social
circles have been proposed for privacy protection [40, 41],
so that new messages are posted to designated social circles
and the message owners have full control of the informa-
tion boundary. Meanwhile, social circles are also expected
to promote information sharing, since they give users the
perception of security and privacy. Various products have
been released by commercial social networking sites, such as
circles in Google+ and custom lists in Facebook. However,
none of them is well-received by users. A major drawback is
the usability problem – it is tedious and labor-intensive to
assign hundreds of existing friends into circles or lists.

The problem of social community discovery has been stud-
ied in the context of social network evolution. Closely-
related social groups are examined to analyze the temporal
and spatial dynamics of social networks. However, such ap-
proaches heavily rely on structural features (i.e., topology
of the friendship graph), and may have difficulties on users
with too many or too few links (sometimes referred-to as
“hubs” and “outliers”). Meanwhile, social circle identifica-
tion approaches from the user-centered research community
often require explicit attributes, e.g. education=“stanford”,

1http://www.statisticbrain.com/facebook-statistics/
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age=21, hobbies=“hiking”[40]. Unfortunately, such attributes
are not always available in online social networking sites.

In this paper, we present a multi-view clustering approach
to automatically discover social circles in users’ ego net-
works. Besides the topology-based clusters adopted in the
literature, we also observe that: (1) friends who are inter-
ested in similar topics (contents) and share similar (or some-
times opposite) opinions are more likely to be placed in the
same circle (by the user); (2) friends are more likely to in-
teract within circles, than cross circles. Based on the obser-
vations, we build computational models to extract multiple
quantitative features from users’ ego networks. We argue
that integrating all structural, content and interaction fea-
tures will improve clustering performance, and eventually
generate more meaningful social circles. We notice that
some views are very sparse (e.g. the views for user inter-
actions), but they provide stronger indications, when two
friends are associated in such sparse views. To better uti-
lize such properties, we present a Selective Co-Trained Spec-
tral Clustering (SCSC) algorithm for multi-view clustering.
Last, to measure the performance of the proposed modeling
and clustering approaches, we introduce a set of quantitative
and user-based evaluation methods. We test our approaches
with real-world social networking data collected from Twit-
ter, and show that SCSC outperforms existing solutions.

Our contributions are three-fold: (1) we are the first to in-
tegrate structural, content and interaction features to iden-
tify social circles in online social networks; (2) we introduce
a novel selective co-trained spectral clustering method to
better handle view inconsistency and view sparsity; and (3)
we implement and evaluate our methods against real-world
social networking data, and demonstrate the superior per-
formance of the proposed approaches.

The rest of the paper is organized as follows: we first
present our models of three categories of features in Section
2. We then describe the multi-view clustering algorithms in
Section 3. We present our experimental results in Section
4. We further discuss some important issues and our future
work in Section 5, provide a brief survey of the literature in
Section 6, and conclude the paper in Section 7.

2. EGO NETWORK MODELING
By definition, a user’s ego network or personal network

includes all the nodes that connect to the user, i.e., all
his/her friends. Social circles of a user’s ego network are
hidden structures of closely connected clusters, For instance,
a user’s high-school friends may constitute a circle, while
his/her colleagues belong to a different circle, and his/her
family members constitute yet another circle.

Existing research on social community discovery mostly
rely on graph topology, i.e., structural features. However, so-
cial circles may not be revealed by a single aspect of the ego
networks. Instead, they need to be inferred from multiple
features. For example, colleagues may interact frequently of-
fline so that they have few online interactions, however, they
are highly connected to each other in the friendship graph.
Meanwhile, a family member may be connected to some
close colleagues on the friendship graph, however, he/she
will mostly interact with other family members, which is a
definitive indicator that he/she belongs to the family circle.

Example 1: Figure 1 demonstrates a small subgraph crawled
from Twitter. Two users are regarded as friends if they mu-

tually follow each other. The subgraph is extracted from
friends of one seed user. For simplicity, the seed user is
not displayed. First, Figure 1 (a) demonstrates the friend-
ship graph – solid lines indicate direct friendship relations,
while dashed lines indicate users without direct connections
but have shared friends. All the lines are labeled with the
number of shared friends (excluding the seed). Next, Figure
1 (b) summarizes the interactions among the users. Each
edge is labeled with (Nrp, Nrt), which indicates the number
of replies and re-tweets between the two users, respectively.
Last, Figure 1 (c) demonstrates the content similarities be-
tween each pair of users (only labels ≥ 0.0065 are shown).
We show edges with labels ≥ 0.01 in thick lines.

As shown in the graphs, three views confirm and com-
plement each other in different regions. For instance, the
strong connection between nodes A and B in Figure 1 (a) is
confirmed by their frequent interactions in Figure 1 (b). The
weak connection between C and E in Figure 1 (a) could be
eliminated given the facts in Figure 1 (b) and (c). Nodes G
and F are disconnected in Figure 1 (a), however, they have
a large amount of interactions and very high similarities in
their tweet contents, which also indicates a close relation-
ship. In summary, we identify three social circles from this
example: {(A,B,C); (D,E); (G,F )}. As we can see, dif-
ferent perspectives can supplement and confirm each other,
which may be utlized to produce better clustering results.2

Formally, an ego network ES is defined as the subgraph of
the social network that includes all the friends of a seed user
S. Note that the seed user himself is not included in the
ego network. In the Twitter data set we used, two users are
defined as friends if and only if they follow each other. In
the ego network, each vertex (Ni) represents a friend of the
seed user, while the edges are defined differently for different
views. In general, we have observed three phenomena about
users’ grouping behavior:

Observation 1. Users in the same circle are more likely to
be connected and share many friends in common.

Observation 2. Users from the same social circle tend to
share interests on similar contents and opinions.

Observation 3. Users in the same circle are more likely to
interact with each other.

From these observations, we propose to integrate three
aspects of information from users’ ego networks to automat-
ically identify non-overlapping social circles. We define six
views that belong to three categories to model the ego net-
works. From the structural perspective, we capture: (1) the
friendship links, and (2) friends-in-common between pairs of
users. From the content perspective, we model: (3) similar-
ities between two users’ posted/shared messages. Finally,
from the interaction perspective, we construct: (4) direct
replies between pairs of users, (5) re-tweet (similar to “for-
ward”) of posts between pairs of users, and (6) co-replies of
the same message (posted by a third user).

The Structural Model. In social networking research,
it is widely accepted that a group of intensively connected
nodes could be considered as a social community. For each
pair of users, they are more structurally connected if they (1)
are friends and/or (2) share more friends. We quantitatively
capture the structural features in these two layers and create
two views correspondingly.
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(a) Label: Common Friends (b) Label: Interaction (C) Label: Content Similarity

Figure 1: Labeled Real World Online Social Network Subnet

We use an adjacency matrix F to capture the first layer.

F (i, j) =

{
1 if Ni and Nj are friends.
0 if Ni and Nj are not friends

Meanwhile, the matrix of shared friends (H ′) for an ego
network ES is defined as:

H ′(i, j) = |ENi ∩ ENj | − 1

where ENi and ENj denote the ego networks of users Ni
and Nj . Note that, we consider shared friends within and
outside of the original ego network ES . We do not count S as
a shared friend, since S contributes equally to all (Ni, Nj)
pairs. Furthermore, the matrix is normalized by dividing
each element by the largest element in the matrix:

H(i, j) =
H ′(i, j)

max
i,j

H ′(i, j)

Eventually, we have generated two views F and H to capture
the structural relationships between pairs of users in ES .

The Content Model. From the content perspective, we
examine the semantic similarities of contents between pairs
of users in ES . We collect all the tweets, replies and re-tweet
messages posted by a user. We exploit the traditional bag-
of-words model, where all the messages posted by the user
are represented as a vector (Di) in the vector space. While
the conventional TF-IDF model is the most popular method
in information retrieval applications, it suffers from some
drawbacks, especially the ambiguity issue – synonyms are
considered orthogonal axes in the term space. Hence, docu-
ments about similar content but from different vocabularies
will be assessed as highly irrelevant. To tackle this problem,
annotation-based approaches have been proposed to label
documents with pre-selected unambiguous terms (topics) so
that documents are represented in the new unambiguous
“topic space”. In this paper, we employ TagMe [12], which
annotates text corpus with topics in Wikipedia. Each tag
is associated with a “goodness” score, ρ, which denotes the
annotating confidence. By setting a threshold for ρ, we can
eliminate all the low-confident tags to reduce noise and am-
biguity, and improve the calculation efficiency. In practice,
we construct a document vector Ti for user Ni, where each
component represents the corresponding TF-IDF weight in
the tag space. The content-based similarity matrix C′, with
cosine similarity, is further defined as:

C′(i, j) = sim(Ti,Tj) =
Ti ·Tj

|Ti||Tj|

We normalize C′ in the same way as we normalize the shared-
friend matrix (H ′). Finally, we have constructed the content
view for ego network ES , to capture the content-based sim-
ilarities among the users.

The Interaction Model. Interactions of online social net-
work users have different forms: reply on each other’s sta-
tus or posted messages, “like” or “dislike” on the messages,
retweet. etc. For each pair of nodes within an ego network,
we consider three types of interactions: reply, retweet, and
co-reply. For reply, we count both directions – the total
number of replies from Ni to Nj and replies from Nj to Ni.
Therefore, the reply matrix could be denoted as:

P (i, j) = |{~ri,j}|+ |{~rj,i}|

We do the same for retweet, while co-reply is undirected.
In this way, we generate three views, and normalize them as
we do with H ′ and C′. As a result, we have constructed the
reply view P , the re-tweet view T , and Co-reply view O.

Overall, we construct six views from personal networks:
two from the structural perspective, one for content, and the
other three from user interactions. Each view is represented
as a matrix demonstrating similarities between each pair of
users within an ego network. The next step is to integrate
these views to identify social circles.

3. MULTI-VIEW CLUSTERING

3.1 Notations and Operators
We use capital letter to represent matrix, boldface to rep-

resent vector and lower-case to represent scaler. Subscript
without parenthesis is used to indicate views, subscript with
parenthesis is used to indicate elements in matrices or vec-
tors, and superscript is used to indicate iteration number
in an iterative algorithm. For example, X(m,n) represents

the element of matrix X on row m and column n, and Xi
j

represents matrix X of view j in the ith iteration.tr(S) is
used to denote the trace of S matrix, A ◦ B to denote the
Hadamard product (element-wise product) between matrix
A and matrix B, and 1E to denote the element-wise indica-
tor function on E. For convenience we define two operators
in Operator 1 and Operator 2.

3.2 Co-trained Spectral Clustering: A Revisit
In this section we briefly review co-trained spectral clus-

tering (CSC) [21], which is a clustering algorithm for multi-
view data. In spectral clustering, it has been shown that
the eigenvectors of the graph Laplacian contains robust dis-
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Operator 1: LapEig(X, k) = Y

Input: X ∈ Rn×n and k ∈ N
Output: Y ∈ Rn×k
Operation:
1: Compute diagonal matrix D with D(ii) =

∑n
j=1X(ij)

2: Compute Laplacian L = D−1/2XD−1/2

3: Compute the top k eigenvectors of L, and store them
in Y with each column as one eigenvector

Operator 2: Cls(X, k) = Y

Input: X ∈ Rn×k and k ∈ N
Output: Y ∈ Rn×n
Operation:
1: Normalize each row of X
2: Run k-means on rows of X to obtain an n by n matrix
Y such that Y(i,j) = 1 if user i and user j are in the same
cluster, and Y(i,j) = −1 if the two users are not in the
same cluster

criminative information about the cluster; hence by applying
standard clustering techniques on the eigenvectors may lead
to a better clustering result. When multiple views of data
are available, CSC alternately refines the graph Laplacian of
one view based on the clustering result suggested by other
views. The refinement is realized by projecting and recon-
structing the Laplacian of one view onto the eigenvectors
of the graph Laplacians of other views. This process iter-
ates and glues the graph edges within a cluster and differs
edges between clusters. The final clustering result is ob-
tained by performing single-view spectral clustering on the
refined Laplacians of dominant views.

CSC assumes the graph of each view is completely ob-
served, and transfers the complete graph information across
views. However, in our application, graphs of many views
are partially observed (hence extremely sparse). For exam-
ple, intimate users may communicate frequently by reply-
ing to each other, while ignoring retweeting messages. In
this scenario, the nonexistence of the link between these two
nodes in the retweet view should not be used to push these
two nodes apart. Similarly, while interaction between two
users is a high indication of their intimacy, it would be too
permissive to advocate a negative relationship between them
if no interaction is observed in retweet or reply views. That
is, we hypothesize that enforcing a completely agreement
between the sparse views and other views will mis-refine
Laplacians and degenerate clustering performance. As we
have justified in experimental study, this is indeed a prob-
lem.

3.3 Selective Co-trained Spectral Clustering
In this section we propose the new multi-view clustering

algorithm. We identify a graph as partial if the number
of non-zero entries (edges) in the graph Laplacian is below
a pre-specified threshold, and safely assume that only non-
zero edges in partial graphs are observed. Our intuition is
that, only clustering results on observed edges should be
transferred from views with partial graphs.

The proposed Selective Co-trained Spectral Clustering (SCSC)
multi-view clustering approach is presented in Algorithm 1.
It is different from CSC in two aspects: 1) CSC uses eigen-

Algorithm 1 Selective Co-trained Spectral

Input: Similarity matrix of two views: K1,K2

Output: Cluster matrix C
Initialize: U0

j = LapEig(Sij , k), C0
j = Cls(U0

j , k), j ∈ Iv
Kall = {Kj}j∈Iv , C0

all = {C0
j }j∈Iv

for i = 1 to iter do
for j = 1 to views do

1: Rij = SO(Ci−1
all ,Kall, j)

2: Sj = Rij ◦Kj

3: U ij = LapEig(Sj , k)

4: Cij = Cls(U ij , k)
end for
5: Ci−1

all = {Ci−1
j }j∈Iv

end for
6: Choose the dominant view j and run Cls(U ij , k) to get
the cluster matrix.

vectors of the Laplacian of one view to refine Laplacians of
other views, while SCSC uses clustering result of one Lapla-
cian to refine other Laplacians, which tends to be more pre-
cise; 2) CSC transfers the complete graph information across
views, while SCSC selectively transfers graph information.

Operation SO(·) realizes the selective process. Let ρj be
defined as

ρj =
# zeros in Kj

# all elements in Kj
, (1)

where Kj represents the similarity matrix of view j, and
abbreviate SO(Ci−1

all ,Kall, j) as SO(j), we design

SO(j) = exp

(
Cj′ ◦

(
1{Kj′ 6=0}

)1{ρ
j′>ρthre}

)
, (2)

where Cj′ represents the clustering matrix of view j′ such
that if user p and user q are assigned to the same cluster
in this view, then the pth row and qth column of Cj′ is 1,
otherwise it is zero. In addition, j′ ∈ Iv, j′ 6= j and ρthre is
a pre-specified threshold. The intuitions behind SO(j) are
as follows:

• For Cj′ , if two users are assigned to the same cluster
in view j′, then the corresponding element in Cj′ is 1
and SO > 1 so their Laplacian in other views will be
boosted, and vice versa.

• For IKj′ 6=0, if two users have non-zero edges in the

partial graph of view j′, then I = 1 and their clustering
result in view j′ will be transferred to other views;
otherwise SO = 1 and their Laplacian in other views
will not be affected.

• I{ρj′>ρthre}is used to identify the views that have par-

tial graphs based on threshold ρthre. Given a view
with partial graph, we have I = 1 and hence the se-
lective component I{Kj′ 6=0} will take effect; otherwise

I = 0 and all information of the graph is transferred.

It is worth elaborating more on the convergence property
of our algorithm. Consider an example of clustering three
users with two views. From one view we obtain the cluster-
ing result

C1 =

1 1 1
1 1 −1
1 −1 1

 , (3)
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which implies user 1 and user 3 are similar while user 2 ad
user 3 are not. For view two we have the similarity matrix
(not the Laplacian)

K2 =

 1 0.8 0.1
0.8 1 0.6
0.1 0.6 1

 , (4)

which implies user 2 and user 3 are similar while user 1
and user 3 are not. Apparently there is certain consistency
between views. After refining K2 by C1 based on Algorithm
1, we have the updated similarity K′2 such that

K2 =

2.7 2.2 0.3
2.2 2.7 0.2
0.3 0.2 2.7

 . (5)

It can be seen that after refinement, we manage to adjust
user 2 and 3 in view two, so that their updated (low) simi-
larity becomes consistent with the clustering result of view
one. However, for user 1 and 3, due to their strong evidence
of dissimilarity in view two, they remain dissimilar after re-
finement.

The above example shows that, our algorithm can effec-
tively adjust and converge on users whose similarity are “un-
certain” in some views, but does not enforce agreement and
converge on users with strong evidence on two views that
are against each other. This is the same issue with existing
co-trained spectral clustering, as evidenced by its empiri-
cal performance on real-world data sets that contain view-
inconsistent (noisy) data. Moreover, in a view with partial
graph, we may have massive strong evidence of dissimilarity
between users, which is largely against their similarities in
other views. In this case, our selective algorithm is expected
to gain much faster convergence rate than non-selective clus-
tering algorithms, as will be seen in our experimental study.
In addition, notice that since update matrix C is symmetric,
the refined similarity matrix K remains symmetric and cor-
responding Laplacian remains positive semi-definite, which
is guaranteed to have real positive eigenvalue.

To extend SCSC to multi-view setting, we let j = {1, 2, ..., `}
and define SO(j) as:

SO(j) = exp

∑̀
j′ 6=j
j′=1

Cj′ ◦
(
I{Kj′ 6=0}

)I{ρ
j′>ρthre}

 . (6)

The summation in (6) follows the majority voting principle:
if two users are grouped in more than half of the other views,
then their similarity in the current view should be boosted;
otherwise their similarity should be decreased. More inter-
estingly, for C′j if half of the views group two users while the
other half separate them, then the summation equals zero
and SO(j) = 1. In this case, we maintain the similarity of
the current view.

4. EXPERIMENT RESULTS

4.1 Evaluation Metrics
To evaluate the quality of our clustering result is quite

challenging since no ground truth is provided and no fea-
ture matrix is available (in fact, not even defined) in most
views. This prevents the use of standard external evalua-
tion metrics such as random index or F-measure or internal

evaluation metrics such as Davies-Bouldin index and Dunn
index. Hence we propose a new internal metric that requires
only the similarity matrix. We believe that better clustering
should group users that are not only structurally cohesive
(more friendship relations among them), but also interact
more frequently and post similar content. Based on this,
our evaluation is tripartite.

We first propose the normalized similarity ratio to evalu-
ate the performance of clustering result for each view. Our
design follows the same idea as Fisher ratio [4], and consists
of three parts, i.e., within-cluster similarity, between-cluster
similarity and sparse degree. To prevent the result from
being dominated by extra-large clusters, we normalize each
similarity by the size of assigned clusters. Consider an arbi-
trary view, let di denote the size of the cluster (number of
users in that cluster) assigned to user i, and recall that K is
the similarity matrix and C is the cluster matrix. We define
the within-cluster similarity as

Swc =
1

Nw

∑̀
i=1

∑̀
j=1

K(i,j)I{C(i,j)>0} (7)

and the between-cluster similarity as

Sbc =
1

Nb

∑̀
i=1

∑̀
j=1

K(i,j)I{C(i,j)<0}, (8)

where Nw, Nb are the normalizers that respectively count
the number of positive and negative elements in C.

By definition, Swc denotes the average similarity between
users in the same cluster, and Sbc denotes the average sim-
ilarity between users in different clusters. For high quality
clusters, it is quite natural to expect similarity within groups
are larger and similarity between groups are smaller. Hence
we define the Normalized Similarity Ratio as

NSR =
Swc

Sbc + α
, (9)

where α is a small constant in case Sbc = 0, which happens
frequently on sparse views.

It is noteworthy that, we do not directly penalize imbal-
ance cluster results, since in applications some social circles,
such as family, are indeed smaller than other circles, such
as friends. However, our metric will lower the score when a
super-large cluster appears.

To evaluate the performance over all views, we define the
total similarity ratio. Let Swc[j] and Sbc[j] respectively de-
note the within-cluster and between-cluster similarity ratio
of view j, where j ∈ 1, 2, ..., `, we define the total similarity
ratio on one data set as

NSRT =

∑`
j=1 Swc[j]∑`
j=1 Sbc[j]

(10)

4.2 Data Collection and View Construction
At present, Facebook and Twitter are two most popular

social networking sites, judging by number of active users
and daily traffic. Since Facebook users mostly use real iden-
tities, it enforces constraints that hinder us from collecting
large amount of data. In this research, we collected our data
set from Twitter, which is most recognizable for the “tweet”
function – the microblog service.

We have implemented a crawler to collect Twitter data
using its API, which allows us to get a Twitter user’s pro-
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file, follower/following lists, and tweet messages. We start
with a random user as the seed, and crawl all his/her in-
formation (profile, follower/following lists and most recent
2,000 tweets). The intersection of the follower list and the
following list are regarded as friends. We crawl the same
set of information from the seed user’s friends. All the
collected data about a seed user and all his/her friends is
considered as one data set. For each user, we attempt to
collect the following information: user name, screen name,
user id, profile create time, description (a personal state-
ment), list of followers, list of followings, location and time
zone. Meanwhile, for each tweet, we collect the following:
tweet id, post time, tweet location, in-reply-to user id, in-
reply-to status id, list of re-tweets (user id and tweet id) and
tweet content. Note that not all the attributes are available
and accurate for all the users. For example, user location
in user profiles is self-generated textual description, where
we have seen “Worldwide”, and “Coming Soon Everywhere”
etc. Meanwhile, tweet locations are accurate latitudes and
longitudes, but they are missing from most of the tweets.

Twitter has enforced mandatory limits on the crawling
rate, especially for crawling account-specific information.
We have collected 92 data sets – 92 seed users and all their
friends. In our data set, each seed user has 245 friends on av-
erage. In total, we have collected information of more than
22K users, with approximately 3 million friendship links,
and more than 27 million tweet messages.

We construct six views, as introduced in Section 2: con-
tent (V1), friendship (V2), common friends (V3), reply (V4),
re-tweet (V5) and co-reply (V6). For each data set, we have
n users in total, and use Vk,[i,j] to denote the similarity be-
tween node Ni and node Nj in view Vk. In particular, for the
content view, we have set a threshold of ρ = 0.2 to remove
80% of the low-confidence tags (Pareto principle, a.k.a. 80-
20 rule). Meanwhile, all the matricides are normalized by
dividing every element by the maximum value in the ma-
trix. Then all diagonal elements are set to one, indicating
that self-similarity is always the highest among all.

4.3 Experiment Design
We first implement the Selective Co-trained Spectral Clus-

tering (SCSC) algorithm with six views, as described in
Section 3. After the update iterations in the algorithm, we
concatenate Uj ’s of the most informative views to obtain
matrix V , and run k-means on rows of V to obtain the final
clustering result. In particular, we concatenate the spectral
matrices Uj of the content and structure views to obtain

V = [Ucontent, Ufriend, Ucommonfriend]. (11)

We choose these views because they are denser in infor-
mation. We did not concatenate interaction views since
they may be too sparse to provide accurate information
for all users. However, their information have already been
(selectively) transferred to the content and structure views
through the multi-view algorithms, i.e. CSC and SCSC.

Baseline approaches. For comparison, we also employ
three baseline approaches on our data: SCAN, SC, CSC.

SCAN: Structural Clustering Algorithm for Networks, pro-
posed in [45], is based purely on friendship information of
social networks. We run SCAN on the friendship view and
compare the results with SCSC.

Table 1: Size of Each Cluster in the Clustering Result. std
stands for standard deviation of all group sizes.

Cluster 1 2 3 4 5 std
SC 8 12 13 25 44 14.6
CSC 16 17 20 24 25 4.04
SCSC 10 10 13 15 54 18.9

Spectral Clustering: SC utilizes eigenvectors and eigen-
values of similarity matrices (or derived matrices), to find
the membership for each vertex. We run spectral cluster-
ing on each view separately to obtain eigenvectors Uj ’s. We
then column-wise concatenate Uj ’s of the most informative
views to obtain matrix V , and run k-means on rows of V .

CSC (Co-trained Spectral Clustering:) Special type
of spectral clustering that exploits multiple sources of infor-
mation, as mentioned in Section 3. We first run CSC on six
views. After the update iterations are done, we concatenate
Uj ’s of the most informative views to obtain matrix V . Run
k-means on rows of V .

In the experiments, we observed similar trends of all ap-
proaches when changing the number of clusters k from 3 to
10. Hence we set k = 5 for all approaches except SCAN. We
use default parameters for SCAN.

4.4 Results and Performance Analysis
We first examine the performance of SC, CSC and SCSC

approaches on six views of one data set, which contains 386
users. We iterate CSC and SCSC for 20 times and re-
port their normalized similarity ratio (NSR) on each view
in Figure 2. We see a general trend that CSC improves
its performance as more iterations are done. This coincides
with the spirit of co-trained style algorithms. However, the
convergence rate is relatively slow and improvements are not
very significant on Tag and Reply views. On the Friend and
Co-reply views, CSC does not improve the performance of
single-view clustering. As we explained before, this may due
to the ignorance of CSC on inconsistency between views,
especially sparse views. On the other hand, our SCSC ap-
proach efficiently and significantly boosts the performance
after just one or two iterations. On Common Friend view,
we observe a degeneration of SCSC, which may be because
this view has lower correlation to other views.

We further examine the balance of the output clusters
produced by each algorithm at their best iterations. An
iteration is called the best iteration of an algorithm if the al-
gorithm reaches the highest total similarity ratio across all
iterations. In Table 1 we summarize the size of each group
generated by one algorithm. It can be seen that CSC en-
courages more balanced clusters, and both SC and SCSC
outputs one big clusters. From the algorithmic point of
view, this may because CSC enforces stronger consistency
across views; hence making the similarity matrix of each
view smoother than before. In practice, we think imbalance
clusters are acceptable in many applications. For example,
a family circle is usually much smaller than a friend circle.

Next we evaluate the performance of all approaches on
92 data sets. The total similarity ratio of each data set is
shown in Figure 3 (data sets ordered by the total similarity
ratio (TSR) from SCSC). It is clear that SCSC outperforms
single-view spectral clustering (SC), while CSC performs the
worst. This coincides with our observation in Figure 2, as
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Figure 2: Normalized Similarity Ratio on Six Views. In each figure, the y-axis represents NSR and x-axis represents the
number of update iterations. Blue dot curve represents SC approach, green dash curve represents CSC and red solid curve
represents our SCSC approach.

well as our analysis of the limitations of CSC: enforcing the
complete similarity information to transfer from one view
to another may contaminate other views and worsen the
performance. Finally, the Mean TSR (MTSR) for SC is
108.8, MTSR for CSC is 24.8, and MTSR for SCSC is 187.4.

Figure 3: Total similarity ratio (TSR) of all data sets.

Figure 4: Normalized Similarity Ratio of all Seed Users on
Friend View.

Last, we compare all approaches with SCAN, which is
designed for structure-based clustering. Since SCAN filters

out outliers, we evaluate all approaches only on the non-
outlier users, to be fair. Total similarity ratio of all data sets
are shown in Figure 4. In particular, the ATSR for SCAN is
71.9, while the updated ATSR for SC is 79.5, ATSR for CSC
is 20.9, and ATSR for SCSC is 100.6. It is clear that the
performance of SCAN is worse than either SC or SCSC,
but better than CSC.

4.5 Manual Evaluation
Ultimately, the quality of the discovered social circles must

be assessed by users. To include users in the loop, we launch
a manual evaluation for boundary nodes. As it is imprac-
tical to manually examine all users, we attempt to evaluate
the nodes that are most doubtful in the clustering process.
A boundary node N represents a user who is clustered by
SCSC into cluster Ci, but is far away from the centroid of
the cluster. In particular, we select the boundary node with
the largest distance (i.e., least similarity) from each data set.
For each selected N , we identify the cluster Cj , which is (on
average) the closest to N other than Ci. We ask users to
evaluate if N should be clustered into Ci or Cj .

In the evaluation, we randomly select 5 nodes from cluster
i and j, respectively. For each selected node nk, we display
it with N to an external evaluator, and ask the evaluator to
answer the question “Do you think N should be in the same
social circle as nk?” In particular, each evaluator marks the
node pair (N , nk) with a score from 1 to 5: 5: strongly agree
– they belong to the same circle; 4: somewhat agree; 3: neu-
tral; 2: somewhat disagree; and 1: strongly disagree – they
do not belong to the same circle. Please note that the eval-
uation is blind. That is, the evaluators do not know whether
the pair of nodes are clustered into the same circle or not.
In the experiment, we asked 5 external evaluators (not the
authors) to evaluate 60 boundary nodes, which means exam-
ining 600 node pairs. As a result, node pairs from the same
cluster, as identified by SCSC, earned an average score of
2.63, while node pairs from different circles earned an aver-
age score of 2.52.

1025



Table 2: Representative tags for clusters of a seed

Cluster Representative Tags
C1 Human,Sleep
C2 Valentine’s Day,Dance,Sport
C3 Ireland,Beer,Coffee
C4 Social media,Health,Cancer
C5 Yahoo!,WHATS’On (Software),Android

From the experiment results, we can conclude that our
multi-view clustering approach is effective in clustering users’
ego networks into circles. Although the margin appears to
be very small, however, we would like to emphasize that we
have selected the boundary nodes (N) that SCSC is least
confident with in the evaluation. Therefore, the result ap-
pears to be acceptable.

4.6 Keyword Extraction for Clusters
To have a direct perception on the content of the circles,

we attempt to discover the most unique tags for each cluster.
To do so, we calculate the probability of“representativeness”
for each tag in each cluster. Intuitively, a tag with larger bias
towards a cluster better represents the content of the cluster.
Formally, the probability of tag t in cluster C, denoted by
P (t|C) can be defined as:

P (t|C) =

∑
i∈C tfnorm(i, t)

|C|

tfnorm(i, t) =
tf(i, t)

max{tf(i, t)|t ∈ Ti}

tf(i, t) is the frequency of tag t in user i’s content, and the
max function returns the largest frequency for all tags in i’s
content. To find the most representative tags in a certain
cluster, we propose to utilize Kullback-Leibler Divergence
(KL-divergence). In particular, we first construct 2 discrete
probability distributions Pt(i) and Qt(i) as.

Pt(i) =
P (t|Ci)∑

Ci∈C P (t|Ci)

Qt(i) =
1

|C|

We further calculate the bias of tags:

BiasKL(t) =
∑
i

(Pt(i) ln
Pt(i)

Qt(i)
)

For each cluster Ci, we can find the tags with largest
BiasKL, and having max P (t|C) in Ci as the representative
tags for Ci. The top 3 tags for 5 clusters of a randomly se-
lected data set are shown in Table 2. For clusters having less
than 3 representative tags, we just show all of them. From
this example, we can see different groups have different top-
ics. For instance, group 2 is leaning towards entertainment,
group 4 seems to be interested in health care information,
while group 5 is quite technical. The extracted content has
been confirmed by our manual examination of the circles. As
a result, we can actually perceive the separations of different
circles in the ego network.

5. RELATED WORK
Identifying social circles from a user’s online social net-

works is important for the individual to exert appropriate

access control on information sharing[39] . However, manu-
ally managing groups on social network sites might present
a burden for users[23, 18], which triggered the idea on using
automatic sociocentric network clustering algorithms [14,
18]. Sociocentric network clustering, which is usually re-
ferred to as community detection, aims to divide people into
groups within which they are more similar[1] and have more
connections[32] or relationships. Traditional personal net-
work studies mostly focus on attribute-based data such as
age, sex [30]. Meanwhile, most of graph-based methods in
community detection (survey [13]) only consider topological
structure and linkage information, e.g., graph partitioning
[19] and hierarchical clustering [15, 32], maximization of a
likelihood [31, 17], matrix factorization [33, 48], etc. There is
a trend in recent research based on graphs which combined
link information and content or attribute information [46,
26, 35] or interaction information between individuals [51].
Another class of approaches attach greater importance to
content or link context information. [9, 27, 49, 50] use meth-
ods like topic modeling to take full advantage of semantic
information, such as email, tweet messages, and documents,
in detecting communities from a social network. [44] pro-
posed a method to find like-minded people who share more
semantically relevant tags. A recent research [36] propose
generative Bayesian models to utilize not only topics and
social graph topology but also nature of user interactions
to discover latent communities in social graphs. The dif-
ference between their work and ours is that we formalize
different types of views, and also use content annotation on
the content view, which concerns the understanding of the
information and is more meaningful in finding similar topics.
Meanwhile, our clustering algorithm is completely different
from [36].

With the rapid growth of online social networks, privacy
concerns of personal information arise, e.g., [16, 28, 47].
Based on privacy concerns, [29] developed a model to dis-
cover social circles by using both network structure and user
profile information; [40] proposed an approach based on apri-
ori algorithm to identify hidden groups by dynamically de-
tecting grouping criteria, i.e. certain combinations of prop-
erties of a user’s contacts, such as relationship, location,
hobbies, age, privacy, etc. The difficulty in utilizing this
kind of methods is that automatically collecting attributes
of users through online social network is a nontrivial task al-
though traditional personal network studies can collect these
information through interviews more easily.

Algorithmically, we employ the multi-view clustering frame-
work to detect social circles considering the multi-view na-
ture of an ego network. This framework provides an au-
tomatic way of merging information from multiple sources,
and has demonstrated superior performance in many appli-
cations such as document categorization [5], digit classifica-
tion [21, 22] or image annotation [43]. In this paper we base
our analysis on co-trained spectral clustering [21], for it uses
the similarity matrices as input, which coincides with our
application setting.

Co-trained spectral clustering (CSC) is an algorithm that
clusters data with multiple views. It is an extension of the
well-known spectral clustering algorithm [37], which groups
data in the spectral embedded space. It has been shown that
the embedded space contains discriminative information for
the underlying structure of a data set. CSC inherits the it-
erative nature of co-training [6], i.e., it alternately projects
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data in one view into the combined spectral spaces of other
views and then groups them using standard k-means clus-
tering algorithm. Such cross-view projection allows the dis-
criminative information of other views to be implicitly trans-
ferred to the current view. While this framework is compu-
tationally efficient, its implicit schema hinders an explicit
control of the information transferred across views. More-
over, it treats all views equally whereas in many applications
the exposition or quality of different views are different and,
as a consequence, negative transfer may occur. For exam-
ple, in our ego network the interaction views are usually too
sparse to be completely consistent with other views due to
its low frequency of usage, which means it they should not be
treated equally as all other views. These limitations of CSC
are tackled in our proposed framework, which uses the com-
bined clustering result of other views to refine the current
view. This schema allows an explicit and selective transfer
of information across views based on each pair of users, and
leads to faster convergence of learning, as demonstrated in
our empirical study.

6. DISCUSSIONS
Computational complexity of SCSC. For an ego net-
work with n users and ` views, suppose all users are clus-
tered into k groups by an iterative multi-view clustering al-
gorithm, i.e. CSC or SCSC, which updates for t rounds
and finally applies standard k-means. The computational
complexity of CSC is O(`t + nk2) and that of SCSC is
O(`tnk2 + nk2), where the extra overload O(nk2) of SCSC
arises from the k-means clustering performed in each round
of update 2. At a first glance, SCSC suffers a much heavier
computational burden than CSC. However, we argue that in
practice such additional cost is quite tolerable.

First of all, we emphasize the difference between an ego
network and a general social network: the former consists
of very limited users (a typical ego network we crawled has
around 200 friends) and grows slowly, whereas the latter
usually consists of millions of users and scales up quickly.
This implies both n and k will remain small and not bring
in too much extra computation. Second, the updates of
each view in one round are independent and thus can be
parallelized. This prevents the computational burden from
being accumulated over views, and reduces the complexity
of SCSC to O(tnk2 + nk2). Besides, as shown in our ex-
periments, SCSC converges much faster than CSC and thus
needs much smaller t rounds of update in practice. By trad-
ing some computational efficiency for adaptiveness, SCSC
significantly boosts the clustering performance.

Non-overlapping vs. overlapping circles. In the ego
network ES of seed S, if we allow any user Ni to belong to
multiple circles, it is regarded as overlapping circles. Mean-
while, if each user Ni is allowed in exactly one circle, it is
non-overlapping circles. In the literature, both types of cir-
cles have been used. In this paper, we select non-overlapping
circles for two major reasons. First, our approach is primar-
ily motivated by privacy protection and information bound-
ary enforcement in social networks. When two social circles
in the ego network overlaps, the overlapping users observe
information from both circles. Such users may also easily vi-
olate the boundaries by moving information from its origin

2For more information about the efficiency of k-means, read-
ers are referred to [2].

circle to the other overlapping circles. This is the online ver-
sion of “social gossip”. On the other hand, in theory, over-
lapping and non-overlapping circles are essentially equiva-
lent. That is, two overlapping circles A and B could be con-
verted to three non-overlapping circles A ∩B;A \B;B \A.
Contained circles A ⊂ B could be converted to two non-
overlapping circles A;B \A.

Applications of social circles. As suggested in [40, 41],
social circles are used to protect information privacy, by de-
livering messages to designated circles and enforcing circle
boundaries. Automatically clustered circles are presented to
users, so that they could further re-organize and configure
such circles. In socialization, messages are posted to the se-
lected circles. Meanwhile, social circle enforcement becomes
particularly challenging when some social networking sites
allows breaches in privacy protection (e.g., when users are
allowed to “re-share” private posts of their friends). How-
ever, those issues are outside of the scope of this paper.

On the other hand, the discovered social circles could be
used to improve the efficiency of ad delivery, targeted ad-
vertising, and opinion mining in social groups. Social circles
could also be used to study users’ socialization behavior and
social network information flow. If temporal information
is added to the data, we can extend our model to further
study the development of social circles and evolution of ego
networks.

7. CONCLUSION
With the extreme popularity of online social networks,

privacy becomes a major concern. The notions of social
circles and information boundary have been proposed, to
protect private information and to facilitate secure socializa-
tion. However, the problem of social circle discovery remains
open and challenging. In this paper, we start with our ob-
servations that users belonging to the same circle are very
likely to: (1) be friends and share many common friends;
(2) be interest in similar content; (3) have more interactions
with each other. We model the ego network with 6 different
views, and we argue that features from different views would
complement each other. We propose an automatic social cir-
cle detection mechanism utilizing multi-view clustering. In
particular, we propose a one-side co-trained spectral clus-
tering technique, which is tailored for the sparse nature of
our data. We tested our algorithms with real-world social
networking data collected from Twitter. Experiment results
show that our approach is both effective and efficient.
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