
HyXAC: a Hybrid Approach for XML Access Control

Manogna Thimma
Cerner Corporation

Kansas City, MO, USA
manogna.thimma@cerner.com

Tsam Kai Tsui
NIPR

Kansas City, MO, USA
ttsui@nipr.com

Bo Luo
EECS, University of Kansas,

Lawrence, KS, USA
bluo@ku.edu

ABSTRACT

While XML has been widely adopted for information shar-
ing over the Internet, the need for efficient XML access con-
trol naturally arise. Various XML access control enforce-
ment mechanisms have been proposed in the research com-
munity, such as view-based approaches and pre-processing
approaches. Each category of solutions has its inherent ad-
vantages and disadvantages. For instance, view based ap-
proach provides high performance in query evaluation, but
suffers from the view maintenance issues.

To remedy the problems, we propose a hybrid approach,
namely HyXAC: Hybrid XML Access Control. HyXAC pro-
vides efficient access control and query processing by maxi-
mizing the utilization of available (but constrained) resources.
HyXAC first uses the pre-processing approach as a baseline
to process queries and define sub-views. In HyXAC, views
are not defined in a per-role basis, instead, a sub-view is
defined for each access control rule, and roles with iden-
tical rules would share the sub-view. Moreover, HyXAC
dynamically allocates the available resources (memory and
secondary storage) to materialize and cache sub-views to im-
prove query performance. With intensive experiments, we
have shown that HyXAC optimizes the usage of system re-
source, and improves the performance of query processing.

Categories and Subject Descriptors

H.2.7 [Database Management]: Database Administra-
tion

Keywords

Security, XML, Access control, View

1. INTRODUCTION
The eXtensible Markup Language (XML) has become very

popular for information sharing in the Internet age. It was
designed to store and transport semi-structured data. Due
to the increased use of XML documents over the web, the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

need to secure these documents has increased. In a multi-
user system, where the information is being shared across
users who have different access rights, it is very important
to implement a security model that gives controlled access
to the authorized users. XML access control was introduced
to suit this purpose. XML access control research could be
roughly categorized into access control models and access
control enforcement mechanisms. Access control models de-
fine how access control rules are specified (e.g. how to spec-
ify “who can access which information under what circum-
stances”), and how such rules should be enforced (e.g. how to
handle conflict rules.) Meanwhile, enforcement mechanisms
implement such access control rules for XML databases.
Various access control models and enforcement mechanisms
have been proposed in the research community. In this pa-
per, we focus on XML access control enforcement.

There are different categories of enforcement mechanisms
proposed in the literature [22], such as built-in approaches,
the pre-processing approaches, view-based approaches, and
postprocessing approaches. In particular, the view-based
approaches, as the most conventional mechanism, create and
manage views for every user/role by making a (virtual) copy
of all the data that are accessible by the user/role. All
the queries are evaluated on the views of the correspond-
ing roles. The pre-processing approaches modify incoming
user queries to new“safe” queries, which request only autho-
rized data. Such queries can then be evaluated on the XML
document without any further security protection. Post pro-
cessing approaches evaluate all the queries from the user on
the database and get “unsafe” results. Once the results are
obtained, they are pruned to discard unauthorized nodes.
While all these approaches are secure, each category has
its own advantages and disadvantages. In particular, the
view-based approaches are considered the fastest for query
processing (with materialized views) because queries are an-
swered by smaller documents (views). However, view main-
tenance becomes an issue – it is non-trivial to maintain and
synchronize a large number of views. On the other hand, the
pre-processing approaches introduce minimum overhead for
access control enforcement. However, queries are still evalu-
ated against the original XML documents – query process-
ing could be slow when the documents are large, especially
when caching or indexing is not well supported in the XML
DBMS. To the best of our knowledge, there is no approach
that tries to utilize multiple XML access control enforcement
mechanisms to provide a hybrid solution, which combines
the advantages of mechanisms from different categories.

SACMAT’13, June 12–14, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1950-8/13/06 ...$15.00.

113

In this paper, we introduce a hybrid approach for XML ac-
cess control, namely HyXAC, which combines pre-processing
and view-based approaches to provide secure and efficient
query processing, as well as maximize the utility of avail-
able resources. The HyXAC approach first adopts the pre-
processing approach (in particular, the QFilter approach [23,
24]) as the baseline to process the queries. Unlike conven-
tional view-based approaches that construct a view for each
role, HyXAC defines a sub-view for every positive access
control rule (or a set of rules). A query accepted by a pos-
itive access control rule is evaluated on the corresponding
sub-view. Fine-grained view management also allows sub-
views to be shared across multiple roles. This eliminates the
need for maintaining a view for every role, thus reducing
the number of views in the DBMS. Moreover, HyXAC en-
ables dynamic allocation of resources for materializing and
caching sub-views. Based on a cost-benefit analysis, dy-
namic view management is introduced to achieve optimal
query performance for the available resource.

The main contributions of this paper are: (1) we introduce
an XML access control enforcement mechanism that exploits
the advantages of both pre-processing and view-based mech-
anisms. (2) We are the first to propose fine-grained views
that are defined for each access control rule or a set of access
control rules, instead of a user/role. It becomes possible for
various roles to share fine-grained views, thus reduces the
redundancy of data storage and also improves query perfor-
mance. (3) We further introduce a cost-benefit model for
fine-grained view materialization. The dynamic view man-
agement approach maximizes the utilization of available re-
sources to obtain best query performance.

The rest of this paper is organized as follows. The back-
ground and related works are discussed in Section 2. We
present our hybrid XML access control enforcement mecha-
nism in Section 3, and the dynamic view management tech-
nique in Section 4. We show the experimental results Section
5, and then conclude the paper.

2. BACKGROUND

2.1 Related Work
The eXtensible Markup Language (XML) is a metalan-

guage that could be used to define customized markup lan-
guages [8]. Due to its flexibility and descriptive power, XML
becomes the de facto standard for information sharing over
the Internet. Meanwhile, the need for access control nat-
urally arises as the XML model gets very popular for data
management. In the literature, XML access control research
could be roughly categorized into access control modeling
and enforcement mechanisms.

An access control model defines how access control poli-
cies are specified. Some of the earlier access control models
that are widely recognized are: discretionary access control
(DAC), mandatory access control (MAC), and role based
access control (RBAC). An introduction of legacy database
access control practices could be found at [33]. In the lit-
erature, most of the XML access control approaches adopt
the RBAC [34] or attribute based access control [3] to spec-
ify the users. Meanwhile, fine-grained access control is em-
ployed so that accessibility is defined at the node level. In
pioneer works in XML access control, such as [4, 5], an ac-
cess request is defined as a triple: the subject, the object
and the access modality, which specifies whether the sub-

ject is requesting a read or a modify access. In addition
to the authorization model for XML, [18] presents an XML
access control language that integrates authorization; confi-
dentiality etc. [11] defines a 5-tuple ACR where the type is
L, R, LW (local weak), or RW (recursive weak). [31] pro-
poses a different rule-function-based access control model to
improve scalability and performance.

The access control enforcement mechanism implements
access control models. As we have introduced, existing XML
access control enforcement mechanisms could be categorized
as: engine-level, view-based, pre-processing, and postpro-
cessing. Engine-level (a.k.a. run-time) mechanisms [39,
10, 40, 15] attach an accessibility list to each node in the
XML tree, and check the list during query processing to
return only accessible nodes. Engine-level approaches re-
quire modifications to XML engine kernels and also intro-
duces extra storage and query processing overhead. They
are currently not adopted in commercial XML engines. On
the other hand, view based approaches [3, 11, 37] create a
separate copy of data for every role. Each view contains
all the nodes that can be accessed by the role. When the
user queries, the view related to that user is loaded and the
queries are answered over the view. Views are relatively
small (compared to the original document), and are faster
to load into memory. Query processing is also faster when
queries are evaluated on a much smaller XML tree. Mate-
rialized views have been employed to improve XML query
performance (e.g. [38, 1]). However, as the number of views
increases, excessive storage overhead is required to store the
views, and it becomes difficult to maintain and update these
views. In particular, although many of the roles may have
similar access control rules, the views are not shared, and
hence increase redundancy of the data being stored in the
views.

Another important category is pre-processing approaches,
including virtual view approaches. They check the queries
against access control rules before evaluating them in the
XML engine. Only safe queries are evaluated, while unsafe
queries are either rejected or rewritten. The static analy-
sis approach [27, 28] creates automata for queries, access
control rules and the XML schema, and compares the au-
tomata to decide if a query is accepted or denied. Mean-
while, the security-view approaches [12, 19, 14] publish a
schema (DTD) that only contains accessible portion of the
XML document for users to write queries. User queries on
the security view are then translated to equivalent queries on
the original XML document and evaluated in the XML en-
gine. QFilter [23] is another pre-processing mechanism that
uses NFA structures developed from access control rules to
check queries and decide if they are accepted or denied. If
a query is neither completely accepted nor rejected, QFilter
rewrites it to a safe query that only yield accessible data.
Since HyXAC employs QFilter as the baseline, we will intro-
duce more details of this approach in the next subsection.
Moreover, other mechanisms in this category include: access
condition table [29], secure query rewrite [26], policy match-
ing tree [30], etc. The pre-processing approaches pass safe
queries to the XML engine, therefore, no additional security
check is necessary. This feature allows such approaches to
be adopted by any XML engine without requiring additional
changes to the query processor.

Last but not least, postprocessing approaches (e.g. [7])
evaluate the original queries against the entire XML docu-

114

ment to get unsafe answers. A postprocessing mechanism
is employed to take access control rules and prune all the
access-denied nodes from the results. This approach could
be useful for streaming XML data or subscription services.

2.2 Preliminaries

2.2.1 Access control model
XML access control modeling is not the focus of this pa-

per, hence, we adopt a relatively simple access control model
used in [24]. In this model, every access control rule (ACR)
consists of a 4-tuple:

R = {subject, object, action, sign}
where the subject denotes the role who is authorized (or de-
nied) to access the data; the object is a set of XML nodes
to be accessed; the action is the operation that can be per-
formed on the object by the given subject (ex: read, write,
update etc.); and the sign specifies whether the action can
be performed on the object or not (ex: +, −: “+” speci-
fies “access granted” and “−”specifies “access denied”). The
“−” takes precedence, when there is a conflict between rules
concerning the same node/set of nodes. When there is no
explicitly defined rule for a node then the access to that node
is denied. In this model, the object is specified using XPath
[2]. XPath is a query language used for selecting nodes in
a XML document. A more powerful XML query language,
XQuery [6], also uses XPath to access data. In this paper,
like in many other XML access control enforcement mecha-
nisms [24, 27], we use a subset of XPath that includes child
(“/”) and descendent-or-self (“//”) axes, wildcards (“*”), and
predicates (“[]”). As an example, the following rule:

R1 = {assistant, //person/name, read,+}
defines that “users of the assistant role are allowed to read
the <name> child of <person> nodes”.

2.2.2 The QFilter approach
Our HyXAC approach uses the QFilter for query pre-

processing. Hence, we briefly introduce the QFilter ap-
proach. QFilter is an NFA-based implementation for XML
access control. It first reads access control rules (ACR) as
input, builds an NFA structure using the ACR to represent
the XPath expressions that are defined as valid (i.e. access
granted) by the ACR. For an incoming query Q, it is pro-
cessed over the NFA to obtain one of three possible results:
(1) the query is accepted as is – all of the requested nodes are
accessible to the user; (2) the query is denied – none of the
requested nodes is accessible to the user; and (3) the query
is rewritten into a safe query Q′ – some of the requested
nodes are inaccessible to the user, and the new query does
not request those nodes. In case (1) and (3), the output
query is transmitted to the underlying XML engine to be
evaluated. Let us look at an example:

Example 1: We use the popular XMark DTD and docu-
ment [35], which simulates an online auction scenario. The
XMark document stores item information, auction (open
and closed) information as well as user information. The
“Assistant” (AS) role has the following access control rules
defined:

Figure 1: Example of QFilter.

R1: {AS, /site/open_auctions, read, +}

R2: {AS, /site/people/person/name, read, +}

R3: {AS, /site/people/person/address, read, +}

R4: {AS, /site/regions/namerica/item, read, +}

The corresponding QFilter NFA is shown in Figure 1. The
accept states of the QFilter correspond to positive rules. For
instance, accept state 3 corresponds to rule R1.

A new query “/site/open_auctions/interval” will be
accepted at state 31. Another query“/site/regions/*/item”
will be rewritten into“/site/regions/namerica/item”, which
only requests for accessible nodes. �

For more details of the QFilter approach, please refer to
[23, 24]. Moreover, it has been extended to handle multi-
user scenarios in [21, 20]. Please note that although HyXAC
employs QFilter for query pre-processing and sub-view defi-
nition, the concepts and mechanisms for fine-grained views,
sub-view sharing and dynamic view management are all orig-
inal contributions of HyXAC.

3. HYXAC: HYBRID XML ACCESS CON-

TROL
Conceptually, the HyXAC model is introduced in two

stages. In the first stage, we add fine-grained view manage-
ment to NFA-based access control enforcement, to create
sub-views for distinct access control rules, and allow sub-
views to be shared among roles. In the second stage, the
views are dynamically materialized and cached, to get max-
imum query evaluation performance for limited resources.

3.1 The HyXAC framework
In this section, we introduce our new model named Hybrid

XML Access Control (HyXAC). HyXAC is a hybrid model
produced by the combination of a pre-processing approach
(QFilter) and the view based approach.

The QFilter used in our approach is similar to the QFilter
described in the previous section. For now, we only consider
positive access control rules. First, a set of access control
rules are used to construct the NFA structure of QFilter.
When an access control rule is added, the last XPath step
from the XPath will result an accept state to be added to
the NFA. For instance, in Figure 1, state 6 is created and
set to be an accept state, when QFilter construction process
reaches the XPath step “/name”. Therefore, every accept

1The recursive semantics is employed in the 4-tuple model
– granting access to a node inherently grants access to the
entire subtree. For more details, please refer to [24].

115

Figure 2: Example of sub-views in HyXAC.

state in the NFA corresponds to one access control rule. In
HyXAC, we introduce fine-grained view management. That
is, we create a sub-view for this rule, which stores the object
node(s) of the access control rule, i.e., the subtree rooting at
the XPath in the object field of the rule. However, this sub-
view is not necessarily materialized. In each accept state
of the NFA, the ID and status of the corresponding view is
stored.

During query processing, each query is first processed in
the NFA exactly the same as the QFilter approach [24].
When the last token from the query reaches an accept state
in the NFA, it implies that the query, or a re-written query,
is accepted by the QFilter. This query could be answered by
the raw XML document, without yielding any inaccessible
data. However, when the corresponding sub-view is mate-
rialized, we can exploit the view to answer the query, for
better query evaluation performance.

Example 2: Let us revisit Example 1 in the previous sec-
tion. If we employ HyXAC in this scenario, 4 sub-views will
be created for the“Assistant” role, as shown in Figure 2. For
instance, View 1 stores the subtree for“/site/open_auctions”.
Meanwhile, State 3 stores the ID of the view (View 1), as
well as the status of the view: materialized, or cached in
memory.

The query “//person[@pid=‘18’]/name”will be accepted
at State 6. If view 2 is materialized, we can answer the query
using the view, which is smaller to load into memory and
manipulate.

3.2 View sharing
In the conventional view-based access control enforcement

mechanisms, a view is created for every role. In the above
example, all four sub-views will be merged into one view,
which will be used to answer queries from role “AS”. How-
ever, many of the roles would have overlaps in access control
rules, hence, there is a lot of redundant data across all the
views.

To handle multiple roles, Multi-Role QFilter (MRQ) has
been introduced in [21]. In MRQ, rules from all roles are put
together to create one NFA, in which every state is attached
with an access-list and an accept-list.

Figure 3: Example of multiple roles in HyXAC.

Example 3: We add two roles: Auction Manager (AM)
and User Manager (UM), to the scenario in Example 1, with
the following access control rules2:

R5: {AM, /site/open_auctions, read, +}

R6: {AM, /site/closed_auctions, read, +}

R7: {AM, /site/people/person/name, read, +}

R8: {UM, /site/people/person, read, +}

The MRQ for all three roles are shown in Figure 3. In
particular, each state is attached with an access list and an
accept list. For instance, the lists for State 4 indicate that
this state is accessible to queries from all three roles, but
only accept queries from role “UM”. In HyXAC, 6 sub-views
are created for the accept states (i.e. rules). Please note
that View 6 actually contains Views 2 and 3, so that we
may not need to materialize the descendent views if View 6
is materialized. We will discuss this issue later. �

The redundant storage of data is one of the drawbacks of
the view-based approaches. Creating a view for every accept
state (i.e. every distinct access control rule) rather than cre-
ating one for every role, answers the problem of redundant
storage. Roles having identical access control rules would
share accept states in the MRQ, and hence share the sub-
views. For instance, if we employ conventional view-based
approaches for the roles in Example 3, three views will be
created, as shown in Figure 4. More duplicate data will be
observed when we have more roles.

In practice, if the sub-views are materialized, they could
be used to answer queries, for better query evaluation per-
formance. In particular, fine-grained views are relatively
smaller than conventional views, so that they are even faster
to load into memory. In the next section, we will discuss
how to select a subset of views to materialize to maximize
the performance with limited resource. Before we move to
sub-view management, we discuss some practical issues in
HyXAC.

2QFilter supports wildcards and predicates, hence, they are
also supported in HyXAC. For the simplicity of the illus-
trations, we only included simple path expressions in our
examples.

116

Figure 4: Conventional views for the three roles in
Example 3.

3.3 Discussions
Handling negative rules. So far, we only considered pos-
itive rules – rules that grant access to a set of nodes. In [24],
a separate NFA is constructed for negative rules – all the
output from the positive NFA are processed in the negative
NFA, and the results are connected by a deep except oper-
ator. In HyXAC, negative rules could be handled in two
different ways: (1) same as [24], or (2) with views.

1. As introduced in [24], a separate NFA could be generated
to capture negative rules. Queries accepted by the posi-
tive NFA are further processed by the negative NFA, and a
“deep-except” operator is used to connect the outputs from
two NFAs. The result query could be directly answered by
the sub-view that is constructed from the positive rule. How-
ever, this solution is less efficient since: (1). the views are
larger than the need to be, since inaccessible XML nodes are
included; and 2. evaluation for queries with the deep-except
operator could be slow, since recursion is needed.

2. Another approach is to remove inaccessible XML nodes
from sub-views, so that queries (w/o deep-except) answered
by the sub-view would not yield any inaccessible data. Con-
sider that access is forbidden by default, negative rules are
only used to revoke access to a subset of nodes that have
been granted access by positive rules. Hence, each positive
rule may correspond to some negative rules, while “dangling
negative rules” could be ignored, since the object nodes are
inaccessible to the user by default. In HyXAC, each view
is created from a positive rule (or a set of positive rules),
hence, we can remove the nodes identified by the correspond-
ing negative rules from the view. In this way, when queries
reach the accept state and are to be answered by the view,
there will be no need to go through the negative NFA, since
the view only contains authorized data.

Example 4: Let us revisit Examples 1 and 3. Assume that
a negative rule is added for the role Assistant:

R9: {AS, /site/regions/*/item/payment, read, -}

The rule says that AS cannot read the <payment> child of
the <item> nodes. With the negative rule, View 4 will be
updated to eliminate all <payment> nodes. Next, a user of
the AS role issues the following query:

/site/regions/namerica/item[quantity>15]

The query will be accepted (as is) by the positive NFA
(shown in Figure 3) at state 10. In conventional solutions
[24], the query need to further go through the negative NFA
and the output will be appended to the original query with a
deep-except operator, which is computationally more expen-
sive. With HyXAC, View 4 could be materialized, and the

accepted query from positive NFA will be directly answered
the View 4. �

As we can see, in HyXAC, negative rules could be handled
by the sub-views, to provide better flexibility and efficiency.

Contained views and combined views. For access con-
trol rules from different roles, the nodes referred in the object
fields could have parent-child or ancestor-descendent rela-
tionships. Therefore, the corresponding views may contain
each other. As shown in Example 3, the object in R8 is the
ancestor of the objects in R2, R3 and R7. Hence, view 6 would
contain views 2 and 3. In this case, we may choose to (1)
drop views 2 and 3, and use view 6 to answer queries from
States 6 and 7 (note that this will not jeopardize security
since the queries generated by QFilter are safe). (2) Keep all
three views. It is up to the database administrator to pick
an option. In particular, approach (2) requires additional
storage, but provides better query evaluation performance
for queries from States 6 and 7.

Meanwhile, we may also choose to combine fine-grained
views, if we observe that the accept list for the corresponding
accept states are identical. That says, when some sub-views
are accessible for the same set of roles, they could combined.
In Example 3, Views 1 and 2 are both accessible for AS and
AM, but not UM, hence, we could combine those two sub-
views.

Queries requiring multiple views. Not all queries could
be answered by sub-views. Especially, some twig queries
may require access to multiple views. In Example 3, a user
from the AS role may submit this query:

/site/people/person[name=‘Alice’]/address

This query will be accepted at State 7, however, the cor-
responding view (view 3) does not have “<name>” nodes to
answer the twig query. Moreover, the XML engine may not
be able to join views 2 and 3 – attribute “id” of “<person>”
nodes is required for join, but it may not be preserved in
the views. Therefore, for queries that access nodes outside
of the destination views, they need to be answered by the
original document, or by the views that correspond to the
ancestor states of the NFA.

The portion of queries that require multiple views highly
depends on the query pattern and design of access control
rules. For instance, the design of R2 and R3 in Example 1
is highly likely to cause queries that cannot be answered by
a sub-view. Such problems could be avoided by carefully
designed access control rules, as well as forcing sub-views
at ancestor states in the NFA. In particular, for logically-
related rules, it is suggested to push the sub-view to their
ancestor states in the NFA, so that twig queries could be
answered by the sub-view. In the above example, a sub-
view could be generated for NFA state 5 (Figure 2) to han-
dle such twig queries. However, this move may slow down
query processing by introducing larger views, which take
more time to load, and decrease flexibility in view manage-
ment. In real-world applications, we may often observe such
logically-related rules, especially with complex ACR. An op-
timal solution is to observe the pattern of the queries, and
merge views that are often requested in the same query. On
the other hand, logically-unrelated rules, such as R3 and R4

in the example, would not cause such problem.

117

4. DYNAMIC VIEW MANAGEMENT
In Section 3, we have demonstrated the HyXAC frame-

work with fine-grained views. In this section, we will look
at the dynamic implementation of the HyXAC model. The
main goal of HyXAC model is to improve the query perfor-
mance under constrained situations where there are limited
resources available. In particular, not all the views can be
materialized and stored in system memory because of mem-
ory constraints. We select the views to be materialized to
maximize the query evaluation performance. We first ana-
lyze the baseline without fine-grained views, so that queries
are answered by the document. We then present the case
where fine-grained views are materialized and stored on the
hard drive. Finally, we introduce a cost-benefit model for
dynamic view caching (i.e. loading to memory).

4.1 The Baseline
In the conventional pre-processing approach (e.g. [24]),

safe queries are evaluated over the original XML document.
In the first stage, all the queries are passed through the
QFilter to get safe queries. Let the time taken for process-
ing a query by QFilter be tQF,qi . Assuming that there are N
safe queries that passed through the QFilter, then, the time
taken for processing all the N queries by the QFilter will be∑N

i=1 tQF,qi . The N queries are further evaluated against
the original XML document on an XML engine. The total
query processing time would be:

∑N
i=1(tL(D)+ tD,qi), where

tL(D) denotes the time to load the XML document (we as-
sume that documents are loaded on-the-fly), and tD,qi de-
notes query processing time. Note that, the document load
time linearly increases with the size of the document, and
it is usually significantly larger than the query evaluation
time. Assume that the document does not stay in memory
– it is loaded for every query, the average end-to-end query
processing time for all N queries would be:

TB =

∑N
i=1(tQF,qi + tD,qi)

N
+ tL(D) (1)

The first part (QFilter processing time and query evalu-
ation time) is relatively moderate, but the second part is
generally more expensive, because loading a document from
hard drive is relatively time consuming.

4.2 HyXAC with fine grained views
Nowadays, cost for secondary storage, in particular, hard

drives, are getting extremely low. On the other hand, the
fine-grained view management in HyXACminimizes the over-
laps between sub-views. Hence, we could assume that all the
sub-views are materialized but not pre-loaded in memory –
each sub-view is stored in an XML file on hard drive (we will
discuss dynamic view materialization later in the section).
In HyXAC query processing, all queries from the NFA will
be answered by the materialized sub-view that corresponds
to the accept state. Hence, the time to load a sub-view to the
memory could be denoted as tL(Vk), where k = GetV iew(qi)
is a function that returns the ID of the view that answers
qi. In practise, the view ID is stored in the accept state.
Let the time taken to answer query qi over this sub-view be
tVk,qi . In this approach, we first assume that the memory
is cleared of the view once the query is answered. Then the
sub-view that answers the next query is loaded into memory

again. In HyXAC, the end-to-end query processing time for
a single query qi is given by:

TH,qi = tQF,qi + tL(VGetV iew(qi)
) + tVGetV iew(qi)

,qi

For N queries, the average query processing time is:

TH =

∑N
i=1(tQF,qi + tL(VGetV iew(qi)

) + tVGetV iew(qi)
,qi)

N

Assume that nk queries are answered by view Vk, the above
equation could be decomposed into:

TH =

∑N
i=1(tQF,qi + tVGetV iew(qi)

,qi)

N
+

∑M
k=1(tL(Vk) × nk)

N
(2)

where M is the total number of views and N =
∑M

k=1 nk.

The first part of TH is slightly faster than the first part
in TB (Equation 1), since evaluating the query on a view
is faster than evaluating the query on a document. The
second part is significantly faster than tL(D) in Equation 1
– the time for loading the document is linear to the size of
the document, and the view is much smaller compared with
the document.

As we can see, HyXAC with fine grained views will per-
form better than traditional method. However, we still ex-
pect to improve it further. In the equation, the query pro-
cessing by QFilter and the evaluation of the query over the
views are optimized. Meanwhile, the second part (loading
the view from secondary storage) can be enhanced. We came
up with a new solution which can improve the average query
processing time.

4.3 HyXAC with dynamic view caching
In database management systems, we always have a chunk

of memory that could be used to cache data. Frequently
queried tables or XML documents are temporarily kept in
memory to expedite query processing. In this subsection, we
introduce dynamic sub-view caching techniques to HyXAC,
for better end-to-end query performance. In particular, we
introduce a cost-benefit model for dynamic sub-view caching.
First, we analyze the cost and benefit of caching a view Vk:

Cost. When the size of the view Vk is SVk , the cost of
caching this view is a function of the size: CVk = C(SVk). In
most cases, the cost increases linearly with the size: CVk ∝
SVk . However, there are certain scenarios where the cost
varies based on certain additional factors. For instance, in
database-as-a-service scenarios, the price of renting the re-
sources may vary. In this paper, we consider the size of the
view as the cost: CVk = SVk .
On the other hand, the total affordable cost (e.g. total

available memory) is limited to Cmax. We assume that we

cannot afford to cache all views:
∑M

k=1 CVk > Cmax.

Benefit. Caching a view in memory saves the time required
for loading the view every time a query needs to be answered
by that view. This eliminates the loading time tL(Vk). So
the query processing time reduces to:

THD,qi = tQF,qi + tVGetV iew(qi)
,qi

while bvk = Δtqi = tL(Vk) is the benefit for qi. Assuming
that there are nk queries being answered by view Vk, the

118

total benefit of caching the view in memory is bvk × nk.
Please note that, ultimately, benefit should be modeled as
the “improvement of user satisfaction”. Research from us-
ability community has shown that the frustration of the user
may not increase linearly with the waiting time. For in-
stance, when wait time gets longer, user’s frustration may
increase exponentially. In this paper, we adopt the sim-
ple linear model, however, the bVk in our cost-benefit model
could be easily altered to fit into more complicate usability
models.

With the cost-benefit model, the problem becomes: to
select a subset of views, so that the total cost is less than
or equal to Cmax , while maximize the total benefit. This is
a classic 0/1 Knapsack Problem, which could be described
as: given a set of items, each has a weight and a value, fill
the knapsack with a subset of items, so that the combined
weight is under the capacity, while total value is maximized.

In our scenario, we define a view loading vector L =
[l1, l2, ..., LM], where lk ∈ {0, 1} indicating whether the view
Vk is cached. The total cost is then denoted as:

C =
M∑

k=1

(CVk × lk) =

M∑

k=1

(SVk × lk) (3)

And the total benefit is denoted as:

B =

M∑

k=1

(bVk × nk × lk) =

M∑

k=1

(tL(Vk) × nk × lk) (4)

Formally, our problem is to find a loading vector L, so that
C ≤ Cmax, while B is maximized.
The knapsack problem is known to be NP-hard. Many

polynomial time approximation approaches have been pro-
posed in the literature [16, 25]. In this paper, we employ the
classic Greedy Approximation [17], which has a O(n) time
complexity (assuming that the benefit-cost ratios (BCR) are
already sorted), while provide good approximation when ci
is relatively small compared with Cmax. Please note that
any approximation approach of the knapsack problem could
be employed in HyXAC. We choose greedy algorithm in this
paper for its simplicity in presentation and relatively good
performance; so that we do not deviate from the main con-
tribution of HyXAC.

The benefit-cost ratio (BCR) is defined as the ratio of the
benefit of caching a view, relative to the cost, i.e., benefit
for unit cost. The BCR for caching view Vk is defined as:

BCR =
bVk × nk

CVk

=
tL(Vk) × nk

SVk

(5)

SVk , denoting the size of view Vk, could be easily measured.
On the other hand, tL(Vk) is approximately linear to the size
of Vk. It could be assessed with a simple experiment too.
However, nk, denoting the number of queries hitting view
Vk, is not always available. We discuss three cases:

Case 1: known query pattern. Assume that we have
observed the incoming query pattern (i.e., we know the frac-
tion of queries that hit each view), and the future queries
follow the same pattern as the observed queries. That is,
nk is known, and could be used to predict the number (or
portion) of queries hitting view Vk in the future. In this
case, we can employ the greedy approximation algorithm

illustrated in Algorithm 1 to get the view loading vector
L = [l1, l2, ...lM], in which li = 1 indicates that view i would
be cached in memory, and li = 0 indicates that view i would
not be cached.

Algorithm 1 Greedy approximation for HyXAC view
caching with know query pattern

Require: M : the total number of sub-views
Require: Cmax: the maximum cost
Require: c[1, ..,M]: the cost of sub-views
Require: n[1, ..,M]: number of queries hitting sub-views
Require: b[1, ..,M]: the benefit of the sub-views
1: return l[1, ..,M]: the view-loading vector
2: for i = 1 to M do
3: s[i] = b[i]× n[i]/c[i];
4: end for
5: sort s[i] in descending order, with index array

ind[1, ...M]
6: C = 0;
7: for i = 1 to M do
8: l[ind[i]] = 0
9: if C + c[ind[i]] < Cmax then
10: l[ind[i]] = 1
11: C = C + c[ind[i]]
12: end if
13: end for

Note that, in line 2, the index array contains the original
view ID of the sorted views, e.g. ind[1] denotes the view
ID of the view with highest benefit-cost ratio. The greedy
algorithm starts from Line 4: we use a loop to go through
the views, from the highest BCR to the lowest. In each
iteration, we check whether there is capacity to load the
current view. If yes, we load the view and move to the next.

Case 2: unknown query pattern. In the case that we
do not know the distribution of the queries, we make the
assumption that queries come in a unified pattern. That is,
the number of queries answered by view Vk is proportional to
the size of the view: nk ∝ SVk . Therefore, we can consider
the total number of queries answered by a view Vk to be
nk = ρ×SVk , where ρ is the number of queries answered by
unit size. The benefit-cost ratio is now modified as:

BCR =
bVk × ρ× SVk

CVk

= ρ× tL(Vk) (6)

Therefore, the greedy approximation will start from the
largest view. In each iteration, the largest “affordable” view
is set to be cached, until no more affordable views are avail-
able.

Case 3: dynamic decision. A more optimized solution
will be to make view-caching decisions decanically. That is,
at time t, use the view patterns observed during a time win-
dow [t − t0], t, and apply Algorithm 1 to select views to be
cached. Views may be unloaded from memory if they are
not hit by queries during the time period, while frequently
queried views are “promoted” to reside in memory. In the
implementation, a counter (FIFO queue) is attached at ev-
ery accept state, to store the number of queries in a unit
time. Every period of t0, the decision algorithm queries the
accept states to get the query distribution to decide which
views to be cached.

119

Algorithm 2 Greedy approximation for HyXAC view
caching with unified query pattern

Require: M : the total number of sub-views
Require: Smax: the maximum cost (total available size)
Require: s[1, ..,M]: the size of sub-views
1: return l[1, ..,M]: the view-loading vector
2: sort s[i] in descending order, with index array

ind[1, ...M]
3: S = 0;
4: for i = 1 to M do
5: l[ind[i]] = 0
6: if S + s[ind[i]] < Smax then
7: l[ind[i]] = 1
8: S = S + s[ind[i]]
9: end if
10: end for

4.4 Dynamic view materialization.
So far, we have assumed that the sub-views are all mate-

rialized and stored on hard drives. As we have introduced,
with fine-grained view management, it is expected that over-
laps between views are significantly reduced, when compared
with conventional views. However, there still exist overlaps
that cause redundancy in storage, such as Views 2, 3, 6 in
Example 3 (Figure 3). As we introduced in previous section,
contained views (e.g. Views 2, 3) do not need to be materi-
alized, since the container view (View 6) could be employed
to answer the queries. To further eliminate redundant stor-
age in HyXAC, we only need to materialize the frequently
queried views.

We can employ the cost-benefit analysis method, as in-
troduced above, for dynamic view materialization. In view
materialization, the benefit will be the difference between
HyXAC query processing time (TH in Equation 2) and base-
line query processing time (TB in Equation 1). The cost will
be the storage for the corresponding view. Again, this be-
comes a knapsack problem, which could be approximated
with polynomial-time solutions.

Moreover, if we combine both view materialization and
view caching in one dynamic process, it becomes the classic
generalized assignment problem. The generalized assignment
problem could be described as: given N items and M bins,
for each item xi against each bin bj , there is a weight wi,j

and a value (also called profit) vi,j . The goal is to assign
items into bins so that (1) the total weights in each bin is
under the capacity ωj of the bin, and (2) the total value is
maximized. The dynamic view materialization and caching
problem in HyXAC is a generalized assignment problem with
2 bins (M = 2). The generalized assignment problem itself
is known to be NP-hard and APX-hard. Various approxima-
tion methods have been proposed in the literature, e.g. [36,
32]; a survey is available at [9]. In HyXAC, as M = 2 and
wi,j is much smaller than ωj , a simple greedy approximation
is expected to achieve relatively good result. In this paper,
we do not go into further details of the 2-bin optimization
problem, so that we do not deviate from the focus on access
control.

5. EXPERIMENTAL RESULTS
Experiment settings. To demonstrate the effectiveness
of our approach, we have performed intensive experiments to

Doc1 Doc2 Doc3 Do

0

20000

40000

60000

80000

100000

120000

140000

D1 D2 D3 D4 D5

Av
g

en
d-

to
-e

nd
 q

ue
ry

pr
oc

es
si

ng
 ti

m
e

(m
s)

QS1 QS2 QS3

Figure 5: End-to-end query processing time for
baseline approach.

compare HyXAC and conventional approaches. First, we use
an implementation of QFilter in [24]. We further implement
HyXAC on top of QFilter in Java. We use Galax [13] for
query evaluation, and use Galax’s Java API to communicate
between HyXAC and Galax.

We use the XMark benchmark [35] to generate XML docu-
ments of various sizes. We construct two sets of access con-
trol rules: each set contains approximately 10 rules, with
RS1 grants access to a larger portion of the XML trees
(portions of accessible nodes vary for different documents).
Meanwhile, we construct 3 sets of XPath queries, with 250,
500, and 1000 queries (with different probabilities for wild-
cards in the XPath), respectively. Every query is submit-
ted on behalf of both roles, and the average query process-
ing time is recorded. Note that we do not include “access-
denied” queries since they are rejected by the NFA and are
not processed by the XML DB. Meanwhile, a very small
portion of accepted twig queries require multiple sub-views
in the evaluation, we eliminated such queries as well.

Baseline. The baseline is the conventional pre-processing
approach. We use Multi-Role QFilter (MRQ) to process
incoming queries. The output safe queries are then submit-
ted to Galax, which loads the XML documents from hard
drive, and evaluate the queries against the document. We
used 5 documents: approximately 5 MB (MBytes), 11 MB,
25 MB, 43 MB and 52 MB, respectively. We assume that
the available memory space is sufficient to load the queried
document in its entirety, but cannot hold all of them in long-
term. That is, documents are loaded on-the-fly during query
processing. End-to-end query processing times are shown in
Figure 5. The results confirm our assumption that query
processing times are dominated by document loading and
parsing times, and appear to be linear to the size of the
documents.

HyXAC with fine grained views. In this experiment, we
assume that fine-grained views are constructed and stored
on hard drive, for every accept state in the MRQ constructed
in the baseline approach. The queries are answered by the
views, instead of the documents. Therefore, the document
loading in the baseline approach is replaced by view load-
ing. It is undoubtable that HyXAC significantly outper-
forms baseline when the document size increases. To demon-
strate the advantage of HyXAC even with a smaller doc-
ument (so that the constant overhead of MRQ and view
management becomes relatively significant), we use the 5MB

120

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10

av
g

en
d

to
 e

nd
 q

ue
ry

 p
ro

ce
ss

in
g

tim
e

(m
s)

QS1 QS2 QS3

(a) rule-set 1

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10

av
g

en
d

to
 e

nd
 q

ue
ry

 p
ro

ce
ss

in
g

tim
e

(m
s)

QS1 QS2 QS3

(b) rule-set 2

Figure 6: End-to-end query processing times for
HyXAC with fine-grained views.

XML document in the rest of the experiments. Role 1 has ac-
cess to approximately 20% of the document (by size), while
role 2 has access to approximately 15% of the document.

For each role, we sort the sub-views based on their costs
(i.e. sizes), and record the average query processing times for
queries hitting each sub-view. End-to-end query processing
times for both roles are shown in Figure 6. Again, query
processing time is mostly dominated by view loading and
parsing times.

As we can see from the results, end-to-end query pro-
cessing time is approximately linear to the size of the docu-
ment. As the sizes of sub-views are significantly smaller than
the original document, we have observed 12x to 600x im-
provement of query processing performance (compared with
original QFilter approach). Meanwhile, if we utilize con-
ventional view-based approaches, the view for each rule-set
would be the combination of all sub-views for the RS. Com-
pared with conventional views, the basic HyXAC approach
could achieve approximately 3x-150x performance improve-
ment.

HyXAC with dynamic views caching. In this experi-
ment, we assume that a small chunk of memory (Cmax KB)
is available to cache the sub-views. We assume that the
query pattern is known, and then employ the cost-benefit
model to identify the views to be cached. We use the greedy
approximation introduced in Algorithm 1. We conduct the
experiments for two roles separately, to better illustrate in-
cremental view caching. Figure 7 demonstrates the memory
utilization ratio, when the available cache memory varies

3
4

5
6

7
8

8
9

9
9

10

0 200 400 600 800 1000 1200

100KB
200KB
300KB
400KB
500KB
600KB
700KB
800KB
900KB

1000KB
1100KB

C m
ax

: t
ot

al
 si

ze
 o

f c
ac

he
 m

em
or

y

Occupied cache

Unused cache

(a) rule-set 1

5

6

7

8

8

9

9

10

10

10

10

0.0 200.0 400.0 600.0 800.0 1000.0 1200.0

100KB

200KB

300KB

400KB

500KB

600KB

700KB

800KB

900KB

1000KB

1100KB

C m
ax

: t
ot

al
 si

ze
 o

f c
ac

he
 m

em
or

y

Occupied cache

Unused cache

(b) rule-set 2

Figure 7: HyXAC with dynamic view management:
cache memory utilization ratio. Numbers of cached
sub-views are shown on the right of each bar.

from 100KB to 1100KB. Please note that 4 out of 10 views
are shared between both roles, and 1400KB of cache is enough
to host all views for two roles.

Next, we assess the query evaluation performance, with
dynamic view caching. We submit queries from all query
sets on behalf of each role, and record the average end-to-
end query processing time. Again, the greedy approximation
algorithm in Algorithm 1 was implemented to identify views
to be cached, while the available memory for view caching
varies from 100KB to 1100KB. The results are shown in
Figure 8. Note that the white bars demonstrate the average
query evaluation time when none of the views are cached,
just for comparison. As expected, query evaluation perfor-
mance improves when more views are cached in memory. In
particular, when all the views are loaded in memory, the
query processing time denotes the time for XML engine to
evaluate the XPath queries and generate results, which can-
not be further optimized outside the XML engine.

Discussions. In the experiments, we assumed that the
XML engine does not have intelligent memory management
– no built-in document caching capabilities. This is true
for Galax and many other open source XML database en-
gines, to the best of our knowledge. For instance, in Galax,
Galax.loadDocument() needs to be explicitly invoked to load
the document in memory. Meanwhile, for XML engines that
could cache frequently queried XML documents, HyXAC
still has significant advantages due to fine-grained view man-
agement. Smaller sub-views in HyXAC provides more flex-
ibility for document caching: (1) memory utilization would
be improved due to the smaller size of the views; (2) cache

121

0

50

100

150

200

250
Av

g
en

d-
to

-e
nd

 q
ue

ry
 p

ro
ce

ss
in

g
tim

e
(m

s)

Total Cache Memory

HyXAC with view caching HyXAC with fine-grained views

(a) rule-set 1

0

20

40

60

80

100

120

Av
g

en
d-

to
-e

nd
 q

ue
ry

 p
ro

ce
ss

in
g

tim
e

(m
s)

Total Cache Memory

HyXAC with view caching HyXAC with fine-grained views

(b) rule-set 2

Figure 8: HyXAC with dynamic view management:
average end-to-end query processing time with var-
ious cache memory size.

hit ratio is expected to be better again due to fine-grained
views – it becomes possible to remove unused portion of
the XML document from memory; and (3) cache update
becomes more efficient since I/O is faster with smaller sub-
views.

6. CONCLUSION
In this paper, we present HyXAC, a hybrid XML access

control enforcement mechanism. HyXAC first employs the
pre-processing approach QFilter to process queries. With
fine-grained view management, a sub-view is defined for each
access control rule (i.e. an accept state in the NFA), and
queries accepted by the access control rule are answered by
the corresponding sub-view. In this way, views are not de-
fined in a per-role basis, so that overlaps among views are
minimized, and sub-views are shared among roles. Further-
more, the dynamic view management mechanism allocates
the available resources (memory and secondary storage) to
materialize and cache sub-views to improve query perfor-
mance. Experimental results show that HyXAC optimizes
the usage of system resource, and improves the performance
of query processing.

7. ACKNOWLEDGEMENTS
Bo Luo is partially supported by NSF OIA-1028098, and

University of Kansas General Research Fund (GRF-2301677).
The authors would like to thank the anonymous reviewers
for their valuable comments that helped improve the quality
of the paper.

8. REFERENCES
[1] A. Balmin, F. Özcan, K. S. Beyer, R. J. Cochrane,

and H. Pirahesh. A framework for using materialized
xpath views in xml query processing. In VLDB, pages
60–71. VLDB Endowment, 2004.

[2] A. Berglund, S. Boag, D. Chamberlin, M. F.
Fernández, M. Kay, J. Robie, and J. Simeon. “XML
Path Language (XPath) 2.0”. W3C Working Draft,
Nov. 2003. http://www.w3.org/TR/xpath20.

[3] E. Bertino, S. Castano, and E. Ferrari. Securing xml
documents with author-x. IEEE Internet Computing,
5(3):21–31, 2001.

[4] E. Bertino, S. Castano, E. Ferrari, and M. Mesiti.
Specifying and enforcing access control policies for
XML document sources. World Wide Web,
3(3):139–151, 2000.

[5] E. Bertino and E. Ferrari. Secure and selective
dissemination of XML documents. ACM Trans. Inf.
Syst. Secur., 5(3):290–331, 2002.

[6] S. Boag, D. Chamberlin, M. F. Fernández,
D. Florescu, J. Robie, and J. Simeon. “XQuery 1.0:
An XML Query Language”. W3C Working Draft,
Nov. 2003. http://www.w3.org/TR/xquery.

[7] L. Bouganim, F. D. Ngoc, and P. Pucheral.
“Client-Based Access Control Management for XML
Documents”. In VLDB, Toronto, Canada, 2004.

[8] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler,
F. Yergeau, and J. Cowan. XML 1.1 (Second Edition).
W3C Recommendation, Aug. 2006.
http://www.w3.org/TR/2006/REC-xml11-20060816/.

[9] D. Cattrysse and L. Van Wassenhove. A survey of
algorithms for the generalized assignment problem.
European Journal of Operational Research,
60(3):260–272, 1992.

[10] S. Cho, S. Amer-Yahia, L. V. Lakshmanan, and
D. Srivastava. “Optimizing the Secure Evaluation of
Twig Queries”. In VLDB, Aug. 2002.

[11] E. Damiani, S. De Capitani di Vimercati,
S. Paraboschi, and P. Samarati. “A Fine-Grained
Access Control System for XML Documents”. ACM
Trans. on Information and System Security
(TISSEC), 5(2):169–202, May 2002.

[12] W. Fan, C.-Y. Chan, and M. Garofalakis. Secure xml
querying with security views. In SIGMOD, pages
587–598, 2004.

[13] M. Fernandez and J. Simeon. Galax, 2009.
http://galax.sourceforge.net/.

[14] J. Foster, B. Pierce, and S. Zdancewic. Updatable
security views. In Computer Security Foundations
Symposium, 2009. CSF ’09. 22nd IEEE, pages 60 –74,
july 2009.

[15] M. Jiang and A. W.-C. Fu. Integration and efficient
lookup of compressed xml accessibility maps. IEEE
Transactions on Knowledge and Data Engineering,
17(7):939–953, 2005.

[16] H. Kellerer and U. Pferschy. A new fully polynomial
time approximation scheme for the knapsack problem.
Journal of Combinatorial Optimization, 3:59–71, 1999.

[17] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack
problems. Springer, 2004.

122

[18] M. Kudo and S. Hada. Xml document security based
on provisional authorization. In ACM CCS, pages
87–96, 2000.

[19] G. Kuper, F. Massacci, and N. Rassadko. Generalized
xml security views. In SACMAT, pages 77–84, 2005.

[20] F. Li, B. Luo, P. Liu, D. Lee, and C.-H. Chu.
Automaton segmentation: a new approach to preserve
privacy in xml information brokering. In CCS ’07:
Proceedings of the 14th ACM conference on Computer
and communications security, pages 508–518, 2007.

[21] F. Li, B. Luo, P. Liu, D. Lee, P. Mitra, W.-C. Lee, and
C.-H. Chu. In-broker access control: Towards efficient
end-to-end performance of information brokerage
systems. In IEEE SUTC’06, pages 252–259, 2006.

[22] B. Luo, D. Lee, W.-C. Lee, and P. Liu. “A Flexible
Framework for Architecting XML Access Control
Enforcement Mechanisms”. In VLDB Workshop on
Secure Data Management in a Connected World
(SDM), Toronto, Canada, Aug. 2004.

[23] B. Luo, D. Lee, W.-C. Lee, and P. Liu. “QFilter:
Fine-Grained Run-Time XML Access Control via
NFA-based Query Rewriting”. In ACM CIKM’ 2004,
Washington D.C., USA, Nov. 2004.

[24] B. Luo, D. Lee, W.-C. Lee, and P. Liu. Qfilter:
Rewriting insecure xml queries to secure ones using
non-deterministic finite automata. The VLDB
Journal, 20(3), 2011.

[25] M. Magazine and O. Oguz. A fully polynomial

approximation algorithm for the 0́lc1 knapsack
problem. European Journal of Operational Research,
8(3):270 – 273, 1981.

[26] S. Mohan, A. Sengupta, and Y. Wu. Access control for
xml: a dynamic query rewriting approach. In ACM
CIKM, pages 251–252, 2005.

[27] M. Murata, A. Tozawa, M. Kudo, and S. Hada. Xml
access control using static analysis. In ACM CCS,
pages 73–84, 2003.

[28] M. Murata, A. Tozawa, M. Kudo, and S. Hada. Xml
access control using static analysis. ACM Trans. Inf.
Syst. Secur., 9(3):292–324, 2006.

[29] N. Qi and M. Kudo. Access-condition-table-driven
access control for xml databases. In P. Samarati,

P. Y. A. Ryan, D. Gollmann, and R. Molva, editors,
ESORICS, volume 3193 of Lecture Notes in Computer
Science, pages 17–32. Springer, 2004.

[30] N. Qi and M. Kudo. Xml access control with policy
matching tree. In ESORICS 2005, 10th European
Symposium on Research in Computer Security, pages
3–23, 2005.

[31] N. Qi, M. Kudo, J. Myllymaki, and H. Pirahesh. A
function-based access control model for xml databases.
In ACM CIKM, pages 115–122, 2005.

[32] G. Ross and R. Soland. A branch and bound
algorithm for the generalized assignment problem.
Mathematical programming, 8(1):91–103, 1975.

[33] R. Sandhu and P. Samarati. Access control: principle
and practice. Communications Magazine, IEEE,
32(9):40 –48, sept. 1994.

[34] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. IEEE
Computer, 29(2):38–47, 1996.

[35] A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu,
I. Manolescu, M. J. Carey, and R. Busse. “The XML
Benchmark Project”. Technical Report INS-R0103,
CWI, April 2001.

[36] D. Shmoys and É. Tardos. An approximation
algorithm for the generalized assignment problem.
Mathematical Programming, 62(1):461–474, 1993.

[37] A. Stoica and C. Farkas. Secure xml views. In
E. Gudes and S. Shenoi, editors, DBSec, volume 256
of IFIP Conference Proceedings, pages 133–146.
Kluwer, 2002.

[38] X. Wu, D. Theodoratos, and W. H. Wang. Answering
xml queries using materialized views revisited. In
Proceedings of the 18th ACM conference on
Information and knowledge management, CIKM ’09,
pages 475–484, 2009.

[39] T. Yu, D. Srivastava, L. V. S. Lakshmanan, and H. V.
Jagadish. Compressed accessibility map: Efficient
access control for XML. In VLDB, pages 478–489,
China, 2002.

[40] H. Zhang, N. Zhang, K. Salem, and D. Zhuo. Compact
access control labeling for efficient secure xml query
evaluation. Data Knowl. Eng., 60(2):326–344, 2007.

123

