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ABSTRACT

Security protection is an integral component for smart homes;
however, smart appliances security has received little atten-
tion in the research community. Household appliances be-
come very vulnerable if we introduce smart functions with-
out proper security protection. In particular, smart access
functions enable users to operate devices remotely. Mean-
while, smart devices are are also designed to support resi-
dential demand response, i.e. postpone non-urgent tasks to
non-peak hours. However, remote adversaries could utilize
such functions to manipulate smart appliances’ operations
without physically touching them. Such interferences, if not
properly handled, could damage the smart devices, disturb
owners’ life or even harm the households’ physical security.

In this paper, we present S2A, a security protection so-
lution to be embedded in smart appliances. First, a SUP
model is developed to quantify penalties from device secu-
rity, usability and electricity price. We employ multi-criteria
reinforcement learning to integrate the three factors to de-
termine an optimal operation strategy. Next, to leverage the
risk of forged control commands or pricing data, we present
a realtime assessment mechanism based on Bayesian infer-
ence. Risk indices are further integrated into the SUP model
to serve as weighting factors of corresponding decision crite-
ria. Evaluation shows that S2A ensures appliances security
while providing good usability and economical efficiency.

Categories and Subject Descriptors

K.6.5 [Management of Computing and Information
systems]: Security and Protection—Physical Security

General Terms

Security, Design

1. INTRODUCTION
As the next-generation standard for power generation and

transmission, advanced computation and telecommunication
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capabilities are introduced into smart devices to constitute a
large-scale smart grid network, and to support “smart” func-
tions, such as large sale load balancing, dynamic pricing,
smart consumption. Unfortunately, most of the advanced
functions, especially those on the power consumption side
(i.e., smart home side), are not yet implemented in the pilot
projects. Security concern is one of the major obstacles that
prevent broad industrial adoption of such smart functions.

Smart appliances are envisioned to receive control com-
mands and electricity prices from the network. Embed-
ded control systems have been installed in household appli-
ances. Manufactures are starting to build appliances with
remote access functions (a.k.a. smart access). For instance,
LG products with THINQ technology were demonstrated
at CES 2011. General Electronics (GE) has been working
with Tendril to connect GE household products over Zig-
bee wireless networks. Such smart access capabilities enable
owners to remotely monitor and operate their devices us-
ing phones, tablets, or through designated websites. On the
other hand, smart meters are designed to receive realtime
electricity pricing (RTP) and pass on to household devices
[14], which optimizes energy consumptions based on RTP
[34]. However, smart appliances are not yet equipped with
smart security protection mechanisms to defend against cy-
ber attacks. For instance, they follow remote control com-
mands without verifying the authenticity of such commands.
In this context, if we introduce “smart” functions to elec-
trical appliances without proper security protection, they
become more vulnerable than conventional devices. Adver-
saries could manipulate or intervene smart appliances’ op-
erations remotely, without physically touching them. More
severely, when compromised devices are set to work in ab-
normal conditions for an extended period of time, they could
be physically damaged, and even compromise environmental
safety. For instance, overheating electric motors are shown
to be a root cause of insulation failures, which is very dan-
gerous to the users. In this paper, instead of focusing on the
traditional security notions of confidentiality, integrity and
availability, we focus on the operational or physical safety of
smart devices. Therefore, the security goal of the S2A ap-
proach is to ensure the physical safety of the smart devices,
preventing them from working in abnormal conditions, when
the smart control environment becomes unreliable.

In this paper, we present S2A (secure smart appliances), a
security protection mechanism for smart appliances. S2A is
an embedded software solution, which employs machine learn-
ing technologies to provide smart and flexible protections for
smart household appliances. First, for an individual smart
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appliance, the S2A models heterogeneous notions of device
security (S), usability (U), and electricity pricing (P) into ho-
mogeneous benefit (or penalty) functions. We then employ
multi-criteria reinforcement learning (MCRL) to integrate
all three factors to determine the optimal operation strat-
egy, which aims to maximize usability and minimize both
security penalties and electricity costs. Next, to leverage
the risk of fake control commands or forged pricing data, we
propose a real-time risk assessment and re-weighting mecha-
nism. We invoke Bayesian inference approaches to evaluate
the trustworthiness of input from each channel, and adjust
the parameters for MCRL criteria accordingly. Through se-
curity analysis and simulation results, we show that our solu-
tion ensures appliance security, while maintaining usability
and economical efficiency of power consumption.

Our contributions are: (1) we introduce a comprehen-
sive security protection for smart household devices. Our
solution integrates usability, electricity pricing, and device
security to maximize the overall benefit (or minimize over-
all penalty). (2) By employing machine learning methods,
S2A provides an effective and reliable security protection.
Moreover, compared with the conventional security notion,
which is black-or-white, S2A seamlessly integrates risk as-
sessment into decision algorithms, without making a verdict
of “safe” or “under attack”. (3) We propose a flexible ap-
proach, in which degree of protection and quality of service
is based on resources (e.g. historical data) and capabilities.

2. RELATED WORK
Smart grids are envisioned as the next generation power

system [50, 16, 40, 48]. Some vision/introductory papers can
be found at [25, 11, 35, 6]. Existing research projects mostly
focus on the “power grid” side (i.e. the macro grid), for ex-
ample, large scale dynamic load balancing, reliability and
recovery, power market [45, 24, 38, 32]. On the other end
of the spectrum, smart meters are being implemented [22],
and smart meter communication systems are being deployed
[41, 42, 1, 39]. Meanwhile, smart appliances are proposed to
improve user experience and cost efficiency: realtime retail
pricing (RTP) introduces dynamically changing electricity
prices that reflect the realtime supply-vs-demand trend [4,
5]. RTP is delivered to smart meters and then household
appliances. With the built-in intelligence, smart appliances
could move non-urgent tasks to off-peak hours to enhance
economic efficiency of power usage [10]. Recently, [34] intro-
duces a reinforcement learning approach to identify a rela-
tively optimal time to start tasks. Tasks from the queue are
picked to execute based on RTP and the length of wait. On
the other hand, systems have been designed to enable re-
mote monitor and control for household appliances through
smart meters [47, 20, 36, 46].

Security and privacy protection is an important and chal-
lenging component in smart grids [26, 19]. A comprehensive
survey is provided at [2]. In particular, [30, 31] studied
the security requirements in the overall smart grid frame-
work and presented security technologies to fulfill such re-
quirements. [44] presents a conceptual framework to pro-
tect power grid automation systems. [7] points out security
requirements and threats related to smart meters. [3] ana-
lyzes external intrusions, and introduces specification-based
detection approach as a potential solution. [27, 28] show

Figure 1: Smart appliances receive control com-
mands and realtime electricity pricing from remote.

that adversaries could attack the advanced metering infras-
tructure to manipulate power usage for energy theft.

Most of the above-mentioned security protection approaches
focus on the power grid, from generators to distributers to
smart meters. Meanwhile, security issues related to house-
hold appliances have been lightly studied in the context
of ubiquitous computing and home-area networks [23, 33].
They mostly concern about wireless communication security,
authentication and privacy issues. For instance, [21] shows
that in-home activities could be inferred from realtime en-
ergy consumption data. However, to our best knowledge,
there has not been any work on protecting appliances’ phys-
ical security, especially at the presence of untrustworthy ex-
ternal inputs (control commands and prices).

3. PROBLEM AND SOLUTION OVERVIEW

3.1 Smart Household Devices
Smart devices receive users’ control commands and real-

time pricing (RTP) from the network. As shown in Figure 1,
utility distribution companies broadcast realtime electricity
prices to households. Various proposals have been suggested
in the literature. The more popular approach is to employ
wired communication from utility companies to neighbor-
hood collector devices, and wireless communications (e.g.
wireless mesh) to further deliver to smart meters. Smart me-
ters then send RTP information to compatible smart appli-
ances via home-area WiFi. Meanwhile, manufactures such
as LG and GE are starting to introduce remote control func-
tions to smart appliances. In their design, users send control
commands via a designated website or a mobile app. The
commands go though the Internet to be delivered to the ap-
pliances, which connect to the Internet through household
WiFi. There are also proposals that such commands could
be delivered via smart meters.

3.2 The Threat Model
In a large scale open platform with many stakeholders,

from the viewpoint of a smart device, it cannot assume ab-
solute security of all the external peer(s). When adversaries
penetrate into the control systems or temper with the com-
munication channel, they could inject forged inputs (control
commands and/or RTP data) into household smart devices,
who may not be able to verify the authenticity and validity
of such inputs. The interferences, if not properly handled,
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could affect the owner’s regular lifestyle, or even cause seri-
ous physical damages. Let us look at some examples:

Example 1: Electric vehicles (EV) are designed to opti-
mize the economical efficiency of power consumption, i.e.,
charge the battery when the electricity price is low, and (op-
tionally) provide power to the household or the grid when
the price is high (a.k.a. vehicle-to-grid [17, 18]). An in-
truder may send forged pricing data to trick EV to operate
improperly to cause financial losses to the owner, to affect
the load balancing of the power grid, or even mess up with
the grid to achieve financial advantages. �

Example 2: Battery life of electric vehicles heavily rely on
proper use and maintenance. An intruder may send forged
fluctuant pricing to trick EV battery to constantly switch be-
tween charge and discharge for a relatively long period (e.g.
start and stop charging 10 times per hour for 10 hours). This
attack will seriously damage the battery, and even cause haz-
ardous conditions when the battery gets overheated. �

Example 3: An adversary could penetrate into the remote
control systems or home-area networks to obtain control
of household appliances. Such interference could affect the
owner’s regular lifestyle, or even cause serious physical dam-
ages. When an adversary sets all the exothermic devices in a
household to maximum heat level simultaneously, the room
temperature rises significantly. More dangerously, the cir-
cuit gets overloaded, and the risk of fire increases. �

In this paper, we consider the situation where smart de-
vices (excluding smart meters) receive potentially harmful
inputs from ostensibly legitimate sources. We do not consider
smart meters, since they are usually located outside of the
household, and they are physically insecure. On the other
hand, a mal-functioning smart meter will not directly threat
household safety. In our settings, each smart appliance in
the residence functions as an agent that has an embedded
control unit to manage its own operations. We assume that
smart devices are physically secure since they are usually lo-
cated inside the household. We also assume that the embed-
ded control systems are not compromised: the control logic
is relatively less complicate; they only receive limited infor-
mation (control and price) from designated sources; software
updates usually require physically touching the device (e.g.
using a USB drive). Therefore, it is not easy to hack into
the kernels of the smart devices remotely.

The goal of the paper is to protect the operational secu-
rity of household smart devices in the presence of potentially
harmful inputs from information (and command) distribu-
tion channels. We also aim to maintain usability (QoS) and
economical efficiency. In particular, we study two channels
that may take suspicious inputs: user control commands
(UCC) and realtime pricing (RTP). Meanwhile, based on
the duration and frequency of suspicious inputs, we con-
sider two types of threats: Threat 1. sporadic incidents and
Threat 2. continuous attacks. Continuous active attacks
are potentially more damaging, and may not be handled by
existing rule-based security protection mechanisms.

Please note that smart meters have essentially different
capabilities and functionalities than household appliances.
Our threat models and countermeasures are not applicable
on smart meters. Some related works on smart meter secu-
rity are summarized in Section 2.

(a)

(b)

Figure 2: Battery charging system under active
attack: (a) forged control commands that rapidly
switch between charging and discharging; (b) charg-
ers operations with rule-based protection.

3.3 Rule-based Security Protection
At present, most of the household appliances, including

smart devices, are equipped with embedded security protec-
tion mechanisms that are usually rule-based. For instance,
when an air conditioner is switched off, its internal security
protection mechanism will keep it off for n minutes before
it could be restarted. Similarly, when a smart car stops
charging, it will mandatorily wait for m minutes to avoid
immediate recharging to protect the battery. Some devices
use sensors to obtain status information, and security rules
are based on sensor inputs. For example: an electronic mo-
tor should stop for n minutes when the motor temperature
is higher than x degrees. However, the rules are mostly de-
signed to protect the device against users’ misuse. They pro-
vide minimum protection, and do not consider future conse-
quences. In particular, they can hardly protect the devices
against active attacks, especially continuous attacks.

Example 4: Figure 2 gives an example of a battery charg-
ing system under active attack. Aimed to damage the bat-
tery, the attacker sends forged control commands that rapidly
switch between charging and discharging. The embedded
rule-based protection mechanism enforces an interval of t
minutes between two charges, to protect the battery against
transient power line faults. As shown in Figure 2 (b), for
continuous attacks, such protection mechanism will only in-
crease charging interval to t. However, without more com-
plicate security protection mechanism, the battery is still
damaged after an extended period of time. �

3.4 Solution Overview
In this paper, we propose the S2A framework, as an em-

bedded software solution to protect operational security of
smart household appliances against misuses and forged in-
puts. The goals are: (1) ensure appliances’ security, (2)
maintain usability, and (3) reduce energy costs. Typically,
smart appliances need to make appropriate tradeoffs be-
tween ensuring usability (e.g. user wants to start the dish-
washer) and minimizing energy cost (e.g. smart dishwasher
wants to wait for low electricity price). Such requirements
usually lead to a complicate optimization problem, which is
difficult, if not impossible, to solve with rule-based methods.

We propose a two-phase solution, which enables smart
devices to learn to protect themselves, without requesting
any support from “supernodes” or smart meters. In the first
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phase, we aim to achieve an optimized and fine-grained op-
erational strategy. The SUP model considers security penal-
ties, usability penalties, as well as economical benefits. In
the second phase, we assess the trustworthiness of each in-
put channel by comparing the instant input with historical
data. Since user commands and RTP demonstrate very dif-
ferent patterns in the regular working conditions, different
intrusion detection mechanisms are invoked accordingly. We
do not provide a verdict of “safe” or “under attack (forged
input)”. Instead, the security assessments are seamlessly
feedback to the SUP model as weight factors of the corre-
sponding penalty (or benefit) functions.

4. THE S2A FRAMEWORK

4.1 Overview of the S2A Framework.
Figure 3 demonstrates the S2A framework. As shown, our

solution constitutes two major components (tiers): the SUP
module and the realtime risk assessment module.

Tier 1: The SUP model. Tier 1 considers the basic
scenario of S2A framework, in which an appliance is an in-
dependent device without any knowledge to external histori-
cal information or environmental information. Note that we
assume a short operation log is available, which records a
queue of user requests to use the device, and recent history
of on-off operations. In the basic S2A solution, we define
a SUP model to capture security, usability and electricity
price. In SUP, a security function s(t) is defined to model
the operational penalty for the physical safety of smart elec-
trical devices; a usability penalty function u(t) is defined to
model the frustration of users (similar to [34]) when they
wait for the delayed operations; and finally real-time elec-
tricity price is received by smart pricing p(t). When a user
requests a S2A-enabled device to operate, SUP balances all
three penalties to make a smart operation plan, so that: the
device always works in a safe working mode; the user will
not be very unhappy because of long wait; and the total
cost of electricity to complete the task is relatively low. In
our solution, we employ multi-criteria reinforcement learn-
ing (MCRL) to make real-time operational decisions based
on three criteria: s(t), p(t), and p(t).

Tier 2: Real-time risk assessment for SUP. In the
second tier of the S2A framework, we consider the trust-
worthiness of the user requests and the electricity pricing
information. To protect smart appliances in the presence of
suspicious control commands or price data, we use Bayesian
inference (RRA-RTP and RRA-UCC in Figure 2) to assess
the credibility of the inputs, i.e. the likelihood of tampered
control commands or forged electricity prices. Note that we
only evaluate the validity of remote data, not physical op-
erations on the device (e.g. pushing a button on the washer
is always considered to be a valid control command). The
Bayesian inference modules takes current inputs to compare
with historical data, and generates two risk indexes Rp and
Ru, which measure the trustworthiness of the control com-
mands and electricity prices, respectively. Unlike conven-
tional intrusion detection approaches, we do not provide a
verdict on whether the system is under attack or not. In-
stead, the risk factors are seamlessly integrated into SUP.
For instance, the risk index for user command (RU ) is sent
back to the SUP model to serve as weighting factor for the
usability penalty. In this way, when forged inputs are de-

tected at tier 2, its risk factor increases, and the correspond-
ing weight factor for the suspicious input channel decreases,
to fade out the suspicious input.

Override Rules. To improve user experience and to give
users better control, especially in unusual circumstances, the
following override rules are enabled in S2A.

(1). In S2A, the user may force the task to be conducted
without any delay, i.e. force usability functions to override
smart-pricing functions. As a reference, in [34], user could
press “start” button twice to instantly start the operation,
without waiting for low electricity price. However, security
penalty is still in place to ensure device security.

(2). For security purposes, we assume that the device could
be turned off at anytime. That is, there is no security
penalty if the user intends to turn the devices off.

(3). When users request legitimate but unusual operations
from remote, the operation could appear to be highly sus-
picious to the realtime risk analysis module. To prevent
any legitimate requests from being denied or deferred, we
introduce an additional task verification process, which is
independent from the routine verification. Risk assessment
could be overridden by additional validation, so that crit-
ical (and irregular) task will not be delayed. Technically,
we enforce an extra authentication to verify the identity of
the requestor. For verified tasks, we increase the weight for
usability and decrease the weight for smart pricing. Once
again, security penalty is still in place.

4.2 The SUP Model
Overview. The core of the S2A framework is an SUP
model. For a smart appliance without long time memory,
we first identify its operational states Ω (i.e., the total re-
ward/penalty gained by leaving the previous states), and
model state transitions as a set of actions A. For sim-
plicity of description, we only consider the case that ap-
pliances are either ON or OFF. Hence, we have four types
of actions: A = {〈OFF→OFF〉, 〈OFF→ON〉, 〈ON→ON〉,
〈ON→OFF〉}. We model the process as a multi-objective
Markov decision process (MMDP) that considers the follow-
ing three criteria, and define penalty functions for each ac-
tion w.r.t. each criterion. Note that we can easily add more
modes (e.g., use four modes: high, mid, low, off) by adding
penalty functions. Our learning algorithms takes general
MMDP, with no restrictions on number of states or actions.

Security Criterion. A security penalty function s(A, t) ∈
R+ is defined to denote the penalty of performing action
A at time t. At high level, security penalty s() quantifies
the potential of damaging the device (e.g. overheat the bat-
tery) and/or harming the environment (e.g. burn down the
house). We only enforce penalties for turning on the de-
vice (〈OFF→ON〉) or keeping on the device (〈ON→ON〉).
s(〈ON → ON〉, t) and s(〈OFF → ON〉, t) cannot coexist
since the current state is either ON or OFF. For simplic-
ity of description, we use s(t) when there is no confusion.
A larger s(t) indicates that the current working condition
is not desirable, and pushes the decision against turning or
keeping the device on.

The parameters of the penalty function are defined by the
manufacture of the appliance, based on the operational and
security characteristics of the device. In our model, each
device is equipped a built-in function generator Gs(oper),
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Figure 3: The S2A Framework: SUP-MCRL: the security-usability-pricing model with multi-criteria rein-
forcement learning; RRA-RTP: realtime risk analysis on realtime electricity pricing; RRA-UCC: realtime
risk analysis on users’ control commands; RP and RU : risk factors.

Figure 4: Examples of security penalty functions

which constructs penalty functions based on pre-defined rules,
device states and recent operations. Gs(oper) is triggered to
refresh s(t) whenever an operation is performed (i.e. at state
change: 〈OFF→ONrlangle or 〈ON→OFF〉). For “smarter”
appliances, the security penalty is generated on-the-fly from
sensor inputs (e.g. heat, environmental temperature, etc).
When the security penalty reaches MAX, it cannot be sur-
passed by other penalty functions – the device should remain
off until security penalty drops.

Example 5: Some devices cannot operate for more than
a pre-defined period of time – they need to stop and cool
down. When the appliance is first switched on, Gs(oper)
generates a security penalty function for keeping the de-
vice on (〈ON→ON〉). In this case, s(t) demonstrates an
increasing pattern (Figure 4 (a)). When it is switched off
before reaching maximum penalty, Gs(oper) refreshes s(t)
to s(t, 〈OFF→ON〉), which requires the device to keep off
for a while, and then starts to decrease (Figure 4 (b)). On
the other hand, some devices (e.g. batteries) cannot switch
between on and off frequently. There could be no security
penalty for keep charging (Figure 4 (c)), but the penalty
function for 〈OFF→ON〉 reaches maximum value once the
device is turned off, hence preventing it from being switched
on until a waiting period (Figure 4 (d)). �

Usability Criterion. A smart appliance receives user re-
quest c(t) ∈ R+ indicating his/her desire to run the de-
vices at time t. Such a control command, however, does
not necessarily start the device instantly, but rather speci-
fies a reservation with the S2A system to run the device at
an optimal (possibly later) time to balance user utility with
other factors, such as economical efficiency and system secu-
rity. With the user reservation at time t0, a certain quantity

Figure 5: Examples of usability penalty functions

c(t0) = e0 of electricity is requested for the operation, oth-
erwise c(t0) = 0, indicating that there is no reserved energy
use at t0. User reservations are stored in a FIFO pending
energy queue qi = {〈t0, e0〉, 〈t1, e1〉, . . .}.

In the SUP model, we capture usability penalty with a
penalty function u(A, t) ∈ R+, which denotes the expected
usability penalty when we take action A at time t. When
the requested task is delayed (〈ON→OFF〉 or 〈OFF→OFF〉)
due to high electricity price or active security protection, us-
ability penalty (u(t)) starts to increase. Meanwhile, there
is no usability penalty for turning on or keeping on the de-
vice. In practice, u(t) cannot be detected on-the-fly, rather,
it is calculated from a pre-defined usability penalty model,
which is based on characteristics of the appliance’s usage
and user-centric analysis results. Note that s(t) represents
the appliance’s perception (guess) of users’ dissatisfaction.
When the operation pauses at time t0 (〈ON→OFF〉), the
appliance immediately knows that task completion will be
postponed. Hence, the penalty s(t) starts to increase at t0.

Example 6: Figure 5 shows some simple examples of us-
ability penalty function u(t). In Figure 5 (a), the task is
paused at τ1, where the penalty function for 〈OFF→OFF〉
starts to increase linearly. In Figure 5 (b), the delayed task
is restarted at time τs, the expected completion time stops
changing. Hence, usability penalty (for 〈ON→OFF〉) keeps
static, until the task is completed at τ2. Meanwhile, if the
user is aware of the task progress, the dissatisfactory level
could decrease when s/he knows that the task is in progress
and is expected to finish soon (Figure 5(c)). Last, as shown
in Figure 5 (d), user frustration may increase again when
the task is paused at τ2, before its completion. �

In S2A, the usability model is pre-built in the smart de-
vice by its manufacturer. u(t) is generated when a new task
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Figure 6: Example of a smart appliance operating
under SUP model.

is picked from the task queue. It is refreshed when the op-
eration of the appliance changes. In general, u(t) increases
(usually nonlinearly) for 〈OFF → OFF〉, and stays stable
or decreases when the task is progressing (〈ON → OFF〉).
The model also takes in the recent working history and en-
vironmental parameters, so that u(t) is adjusted to users’
everyday life. Different appliances will also have different
patterns for usability penalty in different conditions. For
instance, users are less concerned when a smart car is being
charged at night; but s/he may want the task to complete
soon if the car is plugged-in in the morning. In this pa-
per, we model u(t) as an abstract function. Usability and
user behavior modeling problems are studied in the human
factors research community. Usability in the context of dy-
namical electricity pricing has been studied in the context
of residential demand response (RDS), e.g. [34, 15, 12].

Smart Pricing Criterion. Smart appliances are designed
to receive realtime retail electricity prices (RTP) from the
distributor. In the SUP model, realtime price is provided by
a function p(t) ∈ R+. Data from world-wide pilot projects
have shown different patterns of electricity pricing. Most of
them demonstrates a daily revolving pattern, which peaks in
early evening, decreases later into the night, and increases in
the morning. Currently, our model only considers electricity
cost. With reasonable modifications, it could be expanded
to include more complicate cost models, which consider costs
from multiple sources.

The SUP Model. The SUP model integrates all the cri-
teria described above to minimize three factors: security
penalty, usability penalty, and total expense for the task.
Before discussing the detailed learning algorithm, we show
an intuitive example on how the SUP model works.

Example 7: As shown in Figure 6, the user submits a re-
quest at time t0 to an S2A embedded device. Since the elec-
tricity price p(t) is low, the appliance starts instantly (note
that the dashed line in P plot represents average electricity
price, not a decision threshold – there is no preset decision
threshold for each penalty function). We assume that this
device cannot continuously operate for a very long period of
time. Security penalty starts to increase gradually. At t1,
there is a sharp raise of electricity price. Meanwhile, u(t) is
very low at t1 – there has not been any delay until t1. At t1,
the SUP model decides to pause the job. Starting from t1,

usability penalty starts to grow since the completion time is
expected to be postponed (we use a linear function to model
usability penalty in this example, however, real-world usabil-
ity model is usually non-linear). Security penalty reduces as
the device is off. At t2, the SUP model decides to switch
the device on, based on the increasing usability penalty and
decreasing security penalty. At t3, due to very high security
penalty (e.g. the motor it very hot), the device is turned off
again. The device cools down until t4, when it is restarted
to get the task done at t6. �

5. THE ALGORITHMS
In this section, we describe the core algorithms to support

smart protection in the S2A framework. First, we introduce
multi-criteria reinforcement learning (MCRL) to determine
the optimal operational strategy for the SUP model. Next,
we introduce Bayesian-based realtime risk assessment, and
seamlessly integrates risk indices into the SUP model.

5.1 MCRL for SUP
The core problem in the SUP model is to learn an optimal

operational behavior for a smart appliance in the presence
of dynamic preferences/penalties introduced by multiple ob-
jectives. In SUP, a device is an independent agent, which
learns an approximately optimal strategy through trail and
error interactions with the environmental variables. The
pending energy is defined as the amount of energy that is
required to finish the task. When the input power to the
device is stationary, its pending energy is directly propor-
tional to the remaining time to finish the task. The en-
vironment of a smart appliance is described by a deter-
ministic multi-objective Markov decision process (MMDP)
〈Ω, A, f, �ρ〉, where Ω is the finite set of discrete states, A
is the set of actions, f : Ω × A → Ω is the state transi-
tion function, and �ρ is the vector-based penalty function
�ρ : Ω × A → R

n. The state signal xk ∈ Ω describes the
environment at each discrete time-step k. In SUP, xk en-
codes the device’s current working status (i.e., whether the
device is on or off), the current pending energy, the pric-
ing information, the cumulative delay of the task, and the
duration since the last operation (i.e., how long has the de-
vice been on or off), etc. The learning agent can alter the
state at each time step by taking actions ak ∈ A of keeping
on/off or turning off/on a device accordingly. As a result
of the action ak, the environment changes its state from xk

to xk+1 ∈ Ω according to the state transition rules given by
f : xk+1 = f(xk, ak). The agent then receives immediate
vector-valued penalties of taking the action ak on the basis
of multiple evaluating objectives, which is completely deter-

mined by the current state and action: �φk+1 = �ρ(xk, ak).
In the SUP settings, each of the penalty criterions is asso-

ciated with a weight in accordance with its reliability. Given
a weight vector �w = (w1, . . . , wn) and an MMDP, a new
MDP with vector-valued penalty functions is created when
multiplying each penalty ρi(x, a) of type i with wi. For a
constant weight vector �w, the goal of the learning agent is
to minimize the expected discounted penalty:

Φk = E{
∞∑

j=0

γj�φk+j+1 · �w} (1)

where γ ∈ [0, 1) is the discount factor. It can be regarded
as encoding increasing uncertainty about the penalties that
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will be received in the future. Such discounted penalty com-
pactly represents the penalty accumulated in the long run,
and measures a policy’s long-term performance.

For deterministic SUP models, the behavior of an agent is
described by its policy π : Ω → A, which specifies how the
agent chooses its actions given the state. The vector-based
action-value function, �Qπ : Ω × A → R

n, is the expected
return of a state-action pair given the policy π: �Qπ(x, a) =

E{∑∞
j=0 γ

j�φk+j+1. ∗ �w|xk = x, ak = a, π}, and the opti-

mal Q-function is defined as �Q∗(x, a) = minπ
�Qπ(x, a). It

satisfies the Bellman optimality equation

�Q∗(x, a) = �ρ(x, a) + γmin
a′

�Q∗(π(x, a), a′), ∀a′ ∈ A (2)

where a′ = argmina′ [�w · �Q∗(π(x, a), a′)].
The formula is derived from the original Q-Learning[43],

with vector-based representation of the immediate and ex-
pected discounted penalty function. The current estimate of
�Q∗ is updated using estimated samples of the right-hand side
of Equation 2. These samples are computed using actual
experience with the task, in the form of weighted penalty
vectors and pairs of subsequent states xk, xk+1:

�Qk+1(xk, ak) = �Qk(xk, ak)+

αk[�φk+1 + γ �Qk(xk+1, a
′)− �Qk(xk, ak)]

(3)

where a′ = argmina′ [�w · �Qk(xk+1, a
′)].

In variable-penalty settings, we employ an efficient variable-
transfer algorithm derived from [29]. Since the immediate
penalty at each time step is a linear combination of differ-
ent penalty factors (e.g., usability penalty, electricity cost),
and the Q-value function (long term penalty) is based on
the sums of the immediate penalties, we can infer that the
expected discounted penalty of policy π starting from state
x: �w · �Qπ(x, a) is also linear in penalty weights.

In variable-penalty reinforcement learning, each weight
vector corresponds to an individual Markov decision pro-
cess. All the MDPs share the same transition dynamics
(i.e., same states, same actions, same transition function,
etc. One example is that delaying a task will always in-
crease user frustration), but are linear in a set of penalty
features. Thus, given a new weight vector �wnew and a start-
ing state xk, one can approximate the optimal policy πnew

for the new weight vector based on the already learned pol-
icy set C, simply by selecting the one with minimum ex-
pected discounted penalty πnew = argminπ∈C Qπ(xk, a

′),
where a′ = argmina′ [�wnew · �Qπ(xk, a

′)].
SUP-MCRL is presented in Algorithm 1. In step 11, the

agent tests all actions in all states with nonzero probabil-
ity, which is an exploration-exploitation tradeoff problem.
The agent uses the Boltzmann exploration strategy, which
in state x selects action a with probability

Probability(x, a) =
e1/(τ �w·�Q(x,a))

∑
a′ e1/(τ �w·�Q(x,a′))

(4)

where τ > 0 controls the randomness of the exploration.
When τ → 0, this is equivalent with greedy action selec-
tion. When τ → ∞, actions are random. When τ ∈ (0,∞),
actions with lower penalties are more likely to be selected.

5.2 Real-time Risk Assessment (RRA) for SUP
The above model assumes that all the inputs are valid.

However, the control commands and price data could be

Algorithm 1 Multi-Criteria Reinforcement Learning for
SUP

i ← 1
c ← 0
C ← ∅
πinit ← ∅
repeat

Obtain the current weight vector �w and the starting
state xk

if C �= ∅ then
Compute πinit ← �w · �Qπ(xk, a

′)
Initialize the Q-function vectors of the states

end if
Learn the new policy π′ through vector Q-Learning

if (C = ∅) or �w ·Qπinit(xk, a
′) − (�w ·Qπ′

(xk, a
′′) > γ)

then
C ← C ∪ π′

c ← 0
i ← i+ 1

else
c ← c+ 1

end if
until c ≥ 1

ε
ln (i+1)2

δ
return C

fake since the input channels from remote sources are vul-
nerable. Assuming (trusted) historical data is available, we
can further evaluate the trustworthiness of current inputs
by comparing them with the reference data. Due to the
different characteristics of smart pricing signals and remote
user control commands, we evaluate different input channels
with different models. In particular, real-time pricing signals
mostly show a periodical pattern that repeats daily; while
the user control commands are more likely to be scattered
over a certain period of a day and usually conform to diver-
siform distributions. The RRA scheme estimates anomalies
when the new patterns are not in accordance with a historic
norm, and generates two risk indexes, indicating the belief
(for RTP) and the confidence (for remote use control com-
mands) that the input sources are trustworthy, respectively.

5.2.1 RRA-RTP
The smart pricing signal p in S2A is represented in terms

of stochastic variables that are time indexed. Suppose RTP
circulates in periods of T . Rather than serializing real-
time pricing data continuously over time, we model the cur-
rent pricing by exploiting the periodical structure of his-
toric pricing information, and extracting each RTP pdt at
time t (t = 1, ..., T ) as a distinct stochastic process, which
evolves over the index of changing cycles d. For instance,
if electricity pricing data changes/evolves daily, the pricing
sequence at midnight could be modeled as random variables
that are indexed with dates, as these pricing variables are
more closely correlated and easier to be inferred.

For real-time risk assessment of smart pricing inputs, we
choose a Hidden Markov Model (HMM), where the hidden
states correspond to the working conditions z1:T of an appli-
ance (i.e., time-indexed states indicating whether the appli-
ance is under attack), and the observable states correspond
to the real-time pricing states p1:T (and any other states
that we could measure). Such Dynamic Bayesian Network
(DBN) encodes the joint probability distribution over those
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stochastic variables that capture the evolution of the dy-
namic working conditions. In particular, we adopt the fol-
lowing state transition model Pt and observation model Po:

zt ∼ Pt(ẑt|zt−1)
pt ∼ Po(p̂t|phist

t , zt)

where ẑt and p̂t are the predicted states, phist
t denotes the

historic pricing vector at time t, pt ∈ R
+ is the real-time

pricing signal, and zt ∈ {True, False} denotes the unknown
hidden states. The parameters of the conditional probabil-
ity functions are known matrices that could be obtained or
learned from the S2A system. Although we only consider
smart pricing signals as observable states for discussion sim-
plicity, it is worth mentioning that our RRA-RTP algorithm
is also applicable for DBNs with multi-dimensional observa-
tion states with minor modification.

The aim of the analysis is to compute the posterior dis-
tribution of the hidden states P (z0:t|p1:t). Since the obser-
vation model could be non-Gaussian distribution (i.e., daily
electricity pricing may change significantly with seasons), we
employ a particle filtering (PF) algorithm [37] to approxi-
mate the probability distribution of the hidden variables.
The basic idea is to establish a posterior probability distri-
bution of the hidden variable by utilizing a large number
of random samples. The samples are propagated over time
in a sequential importance sampling step and a subsequent
resampling step: (1) The SIS step generates samples from
a specific probability distribution and computes their asso-
ciate weight. (2) The resampling step then multiplies and/or
discards these samples to automatically concentrate them in
regions of interest of the state-space of the hidden variables.

Given N particles {z(i)0:t−1}Ni=1 at time t−1 approximately

distributed according to the distribution P (z
(i)
0:t−1|p1:t−1),

particle filters enable us to computeN particles {z(i)0:t}Ni=1 ap-

proximately distributed according to the posterior P (z
(i)
0:t|p1:t)

at time t. As we cannot sample from the posterior directly,
the PF update process is achieved by an appropriate im-
portance proposal distribution Q(z0:t), from which we can
generate samples:

Q(ẑ0:t|p1:t) = Q(ẑt|z0:t−1, pt)P (z0:t−1|p1:t−1)

The samples from Q(·) must be weighted by the impor-
tance weights

wt =
P (ẑ0:t|p1:t)
Q(ẑ0:t|p1:t) ∝ Po(pt|phist

t , ẑt)Pt(ẑt|z0:t−1)

Qt(ẑt|z0:t−1, p1:t)
(5)

where Qt(·|·) denotes the choice of proposal distribution. To
simplify the calculation, one can adopt the transition prior
as proposal distribution (i.e., Qt(·|·) = Pt(·|·)) [13]. In this
case, the weights are given by the likelihood function

wt = Po(pt|phist
t , ẑt)

The detailed algorithm is shown in 2.

5.2.2 RRA-UCC
The patterns of user control commands are highly user-

dependent, and may be non-revolving. Such characteris-
tics make it infeasible to construct a probabilistic graphical
model as we did in RRA-RTP for anomaly inference. In-
stead, we formulate a frequentist approach to assess the reli-
ability of remote control signals, using observed frequencies
and statistical hypothesis testing. With historic data, any

Algorithm 2 RRA-RTP with Particle Filtering

for t = 1 to T do
For i = 1, ..., N , sample from the transition priors ẑ

(i)
t ∝

Pt(zt|z(i)t−1), and set

ẑ
(i)
0:t ← (ẑ

(i)
t , z

(i)
0:t−1)

For i = 1, ..., N , evaluate and normalize the importance
weights

w
(i)
t ∝ Po(pt|phist

t , z
(i)
t )

Multiply/Discard particles with respect to high/low im-

portance weights w
(i)
t to obtain N particles {z(i)0:t)}Ni=1.

end for

given (daily) UCC input can be considered as one of an infi-
nite sequence of possible repetitions of the same experiment,
each capable of producing statistically independent results.

In RRA-UCC, we integrate two complementary risk as-
sessment schemes to detect anomalies in task starting time
(e.g. remotely start the bread maker at 1am) and anoma-
lies in task frequency (e.g. switch smart car charging on
and off 10 times in a minute), respectively. In our settings,
smart appliances have pre-built default distribution patterns
of starting times, whose parameters are learned from the
usage in the household. Normally, the UCC distribution
prototype of appliances is a sum of N Gaussians in the form

f(x) =
∑

i

ai exp(− (x− μi)
2

2σ2
i

).

For instance, a smart dishwasher is embedded with a UCC
prior in the form of three Gaussian distributions. In a house-
hold where residents do not eat breakfast, the first Gaus-
sian will show a weak (or none) peak. Given the number
of Gaussians in the prior distribution, we can easily obtain
the parameters of each component distribution by multi-
Gaussian fitting techniques (e.g.,[49]). The mean values μi

are clustering centers of the user control commands. The
confidence level αt of an incoming command c(t) appearing
at time t is then evaluated according to the ith Gaussian
with the nearest mean value: αt = fi{(t − μi)/σ

2
i }, where

i = argmini (t− μi). Next, to detect operation frequency
anomalies, we explore the periodical control command in-
terval distributions in a household. The basic idea is that,
the intervals between adjacent operations within a certain
period should conform to the historic norm. Suppose that
a significant repeating cycle of an appliance’s behavior is T
(generally T should be n ∈ N

+ days) . At time t, appli-
ance A receives a remote control command c(t). We obtain
all the intervals between UCCs in [t − T, t], and compare
its distribution with the distributions of intervals in time
slices [t − 2T, t − T ], ..., [t − mT, t − (m − 1)T ] from his-
toric clean data using non-parametric statistical testing ap-
proaches (i.e., Kolmogorov-Smirnov Test [9]). Then we se-
lect the historic time slice(s) where UCC intervals are most
similarly distributed with the current time window [t−T, t],
and retrieve the statistical test results αf (i.e., the p-value of
K-S test) as a measurement of trustworthiness of the current
operation frequency.

The frequentist approach gives a confidence level with a
frequency probability interpretation and/or a pre-experiment
interpretation. Such probabilities are combined as the risk
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Figure 7: Real-time risk assessment for UCC of
smart car charging system.

assessment of the user control command:

Ru = f(αt) + g(αf ) (6)

where f(·) and g(·) are monotone increasing functions.

Example 8: We consider a smart car, which could be re-
motely controlled to start and stop charging. In Figure 7,
(a) and (b) are security penalty functions for the charging
system: users can start charging at anytime, but need to
wait for a while to restart charging after stopping it. An ad-
versary, taking over the control, can send many consecutive
charging requests. In the basic SUP model w/o risk detec-
tion, usability penalty increases as the later tasks are being
hold by the security function. The increasing u(t) penalty
will force charging to restart soon after the security func-
tion drops below MAX. Restart interval will decrease with
higher usability penalty. On the other hand, with RRA, it is
detected that the requests are unusual. With more requests
received, weight for u(t) will decrease significantly, so that
usability will have very small impact in operational decision
making. Therefore, recharging interval will increase to a
level that will not hurt physical security of the battery. �

6. SECURITY ANALYSIS
Objective. From security perspective, the goal of the S2A ap-
proach is to ensure that: (1) the smart device shall not work
in extreme state; and (2) the smart device shall not work in
abnormal state for a long period. It is acceptable that a de-
vice may need to work in abnormal mode for a short while
in special circumstances, or while the risk assessment com-
ponents are in the process of detecting an intrusion.

Threat model. We assume that smart devices are physi-
cally secure since they are usually located inside the house.
We also assume that their control systems are not compro-
mised – the control logic is relatively less complicate, and
they only receive limited information (control and price)
from designated sources; therefore, it is not easy to hack into
the kernels of smart devices. Devices are under two types of
threats: (a) improper operational requests from legitimate
users; and (b) faked operational requests or electricity prices
from attackers. Threat (a) is usually once-only, while threat
(b) could be continuous and more risky.

Baseline security. In response to threat (a), physical se-
curity of each individual appliance is protected by security
penalty function s(t) in S2A. s(t) defines the penalty of turn-
ing on or keeping on the appliance at time t. It cannot be
overridden by other factors. However, it could be suppressed
when the usability penalty is high (e.g. the task had been
held for a long time), so that the appliance may work at
non-favorable mode for a short period of time. Both s(t)
and u(t) are generated by mechanisms embedded in smart

appliances. Manufactures should set a very high security
penalty (e.g. infinite) when the device is approaching ex-
treme status. Moreover, to ensure security objective (1) de-
scribed above, s(t) cannot be surpassed when it reaches max
– the device must be switched off. Therefore, with a prop-
erly designed security function, the device is guaranteed not
to work in extreme state. The baseline security assurance
applies for both threat (a) and (b).

Response to continuous attacks. Tier 2 of the S2A frame-
work is to identify abnormal inputs, especially continuous
abnormal inputs. Forged pricing data (or legitimate but un-
stable data) is detected by the RRA-RTP component. The
RRA-RTP model employs HMM, so that the current risk as-
sessment will affect the next assessment; therefore, the risk
index will propagate continuously. When pricing informa-
tion demonstrates unusual patterns for an extended period
of time, RRA-RTP will detect increasing risk, and the weight
for p(t) will continuously decrease. In this way, price factor
will become too weak to disturb the normal operations of
the device. On the other hand, fake user input will be de-
tected by RRA-UCC. A one-time fake command may not
be detected if the command history does not demonstrate
a strong pattern, or the fake command falls in the pattern.
Meanwhile, when the attacker sends multiple commands in
a short period of time (e.g. “start battery charging” - “stop
charging” - “start charging” - etc.), the high frequency ab-
normalities are always accurately detected. The weight for
usability factor decreases accordingly, and the system sees
less need to fulfill such requests. S2A ensures that the smart
device will not work in extreme mode in any condition; and
also ensures that the smart device will not work in abnor-
mal mode for a long period, with the presence of continuous
attacks (faked operational requests or electricity prices).

False positives. Traditional intrusion detection systems
(IDS) strive to reduce false positives and false negatives.
Conceptually, false negatives are undetected anomalies. As
we have shown, since we do not label the input data with
a binary decision (safe or abnormal), unusual inputs will
always be penalized in the second tier of the SUP model.
On the other hand, false positives are normal inputs (that
appears to be suspicious) that are mistakenly labeled as
anomalies. Again, since we do not enforce a decision bound-
ary, such inputs are not classified as anomalies. As they
carry patterns that are different from regular ones, they will
be somehow penalized (i.e. weights will be reduced) in the
SUP model. However, the degree of the penalties are lower
than the“true negatives”. More importantly, the existence of
the usability criterion effectively balances the (wrong) penal-
ties, so that users will not become extremely dissatisfied.

Comparison with rule-based security protection. In
some appliances, security protection is provided by rule-
based decision (e.g. the motor should stop after continuous
operation for 5 minutes, or the device has to remain off for 3
minutes before turned on again). Compared with rule-based
decision method, we provide fine-grained security protection
– SUP starts protection before reaching the extremely crit-
ical point (i.e., the rule-based decision boundary), but also
allows a certain level of compromise at the strong demands
from other factors. Moreover, in the presence of continu-
ous active attacks, we provide better security by dropping
attacker inputs, instead of working at minimum-protection
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Figure 8: Real-time risk assessment for realtime
pricing: RRA-RTP
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Figure 9: Real-time risk assessment for user control
commands: RRA-UCC

conditions (as shown in Example 4 in Section 3). On the
other hand, when we take smart pricing and remote control
into consideration, the system becomes too complicated to
be handled by rule-based models.

7. EXPERIMENTAL RESULTS
To demonstrate the effectiveness of the S2A approach, we

first generated synthetic usage and pricing data based on
heuristic assumptions, and tested S2A with these data. Note
that our S2A framework could take arbitrary form of UCC
and RTP inputs; as well as arbitrary form of security and
usability penalties. In our simulation, the Q-value of a state-
action pair converges after approximately 150 learning steps.
In real world applications, however, the Q-table of a smart
appliance is usually pre-trained by manufacturer, so that it
would adapt to new conditions faster and more accurate.

For RRA-RTP, we implement Algorithm 2 with 1000 par-
ticles. The observation model Po is set to be the weighted
sum of historic mean RTP and white noises, where the weights
are derived from the current states zt in the HMM. As is
shown in Figure 8, historical pricing (dashed line) follows
a periodic pattern that revolves daily. The solid blue line
denotes realtime pricing, and the red dots indicates the risk
indexes (Rp) generated by RRA-RTP. As shown, RTP devi-

ates away from the historic distribution starting from time
point 68. The anomalies are detected and Rp increases cor-
respondingly. On the other hand, Figure 9 shows the real-
time risk assessments of user control commands. The upper
plot shows the UCC distribution pattern, which is learned
from historical control commands. The lower figure denotes
real-time user control commands and the corresponding risk
indexes generated by our algorithm. As we can see, slight
offsets of request time will not immediately affect the risk
assessment. However, clear unusual patterns (starting at
time 90) are effectively detected. The risk index increases
when we have higher confidence that the received control
commands demonstrate an abnormal pattern.

We have tested S2A for different alternations of user com-
mands, electricity pricing and security penalty patterns. Fig-
ure 10 demonstrates part of the experiment, which contains
a complete use case. In this experiment, we adopt a sce-
nario that the device cannot work for a long time (e.g. a
motor). As shown in the first plot, a request is made at
time point 4829 (middle of X-axis). It is put on hold due to
high RTP (plot 4), and usability penalty starts to increase
(plot 3). At approximately time 4840, usability penalty sur-
passes RTP penalty, the job starts to be processed, and the
security penalty increases. S and P together stop the oper-
ation at time 4842, and waited until time 4848, when RTP
drops to very low. From 4848 to the end of the task, the
security penalty has stopped the operation twice, to force
the motor to cool off. Overall, the task was completed with
balanced considerations of S, U, and P.

8. CONCLUSION & FUTURE WORK
In this paper, we present S2A, a two-stage security protec-

tion framework for smart household appliances. We first in-
troduce a Security–User–Price (SUP) model to capture three
key factors, and present a multi-criteria reinforcement learn-
ing (MCRL) approach to integrate all three factors to dy-
namically determine an optimal operational strategy for the
smart device. Furthermore, we present two risk assessment
approaches based on statistical inferences. They evaluate
the trustworthiness of users’ remote control commands as
well as the pricing information received through smart grid
communication systems. The realtime risk indices are seam-
lessly incorporated into the SUP model to serve as weighting
factors of the corresponding penalty functions, therefore en-
sures device security under active attacks. Through security
analysis and experimental results, we show that S2A pro-
tects the device security of smart appliances, while main-
taining usability and economic efficiency.

We have presented the S2A model in the paper, however,
deploying the model on smart appliances still requires a lot
of research and engineering efforts. First, it is nontrivial
to define security functions for different types of smart de-
vices. For appliances with sensors to monitor device status,
it is also challenging to quantify (usually non-linear) sensor
inputs and assess risks. On the other hand, it requires in-
tensive human and behavior studies to observe usage habits
of different devices and construct usability functions from
the observed patterns. That is, the model still needs to
be equipped with application-specific parameters to demon-
strate best performance. Finally, it is important and ef-
fective to enable collaborations between smart devices for
situational awareness and better risk assessment.
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Figure 10: Sample results for S2A. From top to bottom: pending energy, appliance security penalty, usability
penalty, smart pricing, and energy allocation actions.
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