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Abstract—The smart grid systems aim to integrate conven-
tional power grids with modern information communication
technology. While intensive research efforts have been focused on
ensuring data correctness in AMI data collection and protecting
data confidentiality in smart grid communications, less effort
has been devoted to privacy protection in smart grid data
management and sharing. In smart grid data management, the
Advanced Metering Infrastructure (AMI) collects high-frequency
energy consumption data, which often contains rich inhabitant
and lifestyle information about the end consumers. The data is
often shared with various stakeholders, such as the generators,
distributors and marketers. However, the utility may not have
consent of the users to share potentially sensitive data. In this
paper, we develop comprehensive mechanisms to enable privacy-
preserving smart data management. First, we analyze the privacy
threats and consumer identifiability issues associated with high-
frequency AMI data. We then present the first solution based on
data sanitization, which eliminates sensitive/identifiable informa-
tion before sharing usage data with external peers. Meanwhile,
we present solutions based on secure multi-party computing to
enable external peers to perform aggregate/statistical operations
on original metering data in a privacy-preserving manner. Exper-
iments on real-world consumption data demonstrate the validity
and effectiveness of the proposed solutions.

I. INTRODUCTION

Envisioned as the next-generation power grid, the smart
grid (SG) modernizes the existing power grid with bidirectional
communication and pervasive computing capabilities for smart
generation, distribution, management and consumption. In
smart grid systems, high-frequency measurement data (e.g.,
register readings and time-interval consumption data), power
quality data (e.g., voltage or current phase angle) and event
data (e.g., outage alert) are collected from millions of smart
meters and sent to the meter data repository at utilities. These
data are expected to play a key role in supporting intelligent
management applications (e.g., load forecasting, demand man-
agement, outage management, energy theft detection, etc.) and
improving smart grid stability and energy efficiency. However,
when the power grid evolves to become “smart”, new security
challenges have emerged. The security concerns come from
the enlarged attack surface, for instance, smart meters are
placed in physically insecure locations that are easily acces-
sible to the adversaries, and thus are subject to attacks from
physically tampering with meter reading (e.g., meter invasion)
to manipulating measurement data in communication channel
between meter processor and the embedded sensor. Moreover,
the upgraded connectivity makes smart meters susceptible to
cyber attacks in which adversaries may compromise smart
meters or eavesdrop the communication.

While intensive research efforts have been focused on
data correctness and trustworthiness in AMI data collection,

less effort has been devoted to data privacy protection. In
SG, energy consumption data that contains rich information
about end consumers is collected at a much higher frequency
than before. Without proper protection, realtime fine-grained
metering data may disclose sensitive information about the
consumers and expose them to a variety of privacy threats.
For example, information about the lifestyle of the inhabitants
can be inferred from high-resolution metering data via non-
intrusive appliance load monitoring (NIALM). In [1], the
power consumption data is correlated to appliance usage to
associate power events with automated appliances activities
and inhabitant’s activities. Such privacy-sensitive household
data may be used by third-party industries to profile energy
consumption patterns for maximizing their revenue, or by
malicious adversaries to derive the living patterns and conduct
further intended attacks. For the sake of customers’ privacy,
personal data and consumption data in smart metering should
be protected from unauthorized sharing, disclosing or selling.

On the other hand, one major function of the smart grid
system is to collect precise energy consumption data from
residential loads and smart meters so that a detailed view of en-
ergy usage will be provided to both utilities and consumers. A
multitude of energy services are anticipated to be incorporated
into the smart grid system to provide value-added services such
as dynamic billing, load monitoring and forecasting, demand
response, outage and fraud detection, etc. To facilitate such
applications, high resolution energy consumption data is ex-
pected to be shared among various organizations in the industry
and the governments, i.e., between the utilities and third-party
service providers, which require access to the metering data at
different levels of spatial and temporal aggregation.

While several privacy enhancing techniques (PET) are
proposed recently, many of them are based on assumptions
that either require extra hardware [2] or are computationally
demanding [3], [4]. In this paper, we present a set of solutions
for privacy-preserving smart meter data sharing. We argue that
practical solutions should be well in line with smart grid data
management requirements raised by various relevant stake-
holders, particularly taking smart operations and data analytics
requirements into considerations. First, we observed that un-
anonymized and un-sanitized high-frequency usage data is
collected at utilities, which is the status quo of smart grid data
management in the industry. Although users may proactively
manipulate their usage information (e.g., by installing a battery
in the household), the high hardware cost may discourage
widespread adoption of such mechanisms. Meanwhile, col-
lecting accurate usage data is essential for smart operations
(smart consumption, distribution and generation), hence, it is
the utilities’ best interest to collect original high-frequency
usage data and share with its partners in the smart grid system,



such as the generators, distributors and marketers.

Therefore, our goal is to prevent such stakeholders from
obtaining identifiable smart metering data, while still enabling
them to perform their respective functions. In particular, we
propose two categories of solutions: (1) we first analyze the
privacy threats in the currently published smart metering data
sets, and introduce a data sanitization-based mechanism to
protect sensitive information before sharing it for external
usage; (2) we then present solutions based on secure multi-
party computing to enable the third parties to perform aggre-
gation operations on the smart metering data in a privacy-
preserving manner. To demonstrate the effectiveness of the
proposed solutions, we have implemented our mechanisms and
performed experiments on real-world power consumption data.

II. BACKGROUND AND MOTIVATION

System model. Smart meters are installed at each household
and connected to the supplier through AMI. The supplier is
either an actual power generator or a grid operator (e.g., a
utility) with legitimate interest and privilege to collect the
identifiable consumption data. We assume there exist multiple
third-party data consumers who are allowed to access smart
metering data non-intrusively. Hence, the system model is
characterized by smart meters, a supplier, and a set of third-
party energy service providers. The supplier collects terabytes
of fine granular energy consumption measurements stemming
from various consumer households, and provides access to
the energy service providers in two ways: (1) publishing
pseudonymized consumption data to external stakeholders for
secondary use; or (2) answering queries of providers.

Data model. Energy consumption data is essentially a col-
lection of temporal sequences, also known as energy con-
sumption traces. It consists of records of electric consumption
data collected at each household at discrete time slots of
equal length. The resolution of a consumption trace is the
number of time slots per day. For example, the ISSDA CER
Smart Metering dataset [5] studied in this work contains
data collected from over 5,000 Irish homes and business
participants with a resolution of 48 (i.e., half hourly). The
dataset D consists of m time series records {rm}, described
by d attributes A = {A1, A2, ..., Ad}, where each attribute
Ai is the consumption data observed at time slot Ti. To
protect end users’ privacy, identifiable information about the
inhabitants or households, such as account number, address,
phone number, etc., is removed from consumption traces.
In industrial practice, they are replaced by pseudonyms [6].
The resulting dataset is considered “anonymized” (or more
precisely “de-identified”). An example of the pseudonymized
consumption trace is shown in Figure 1, which contains 1-day
consumption data of 10 households’ at a resolution of 48.

Trust model. Metering data is collected by smart meters
at each household and transmitted to suppliers’ data server
through AMI. We assume all participants (e.g., smart meters,
neighborhood collectors/gateways) in this process follow the
protocol properly. The supplier is fully trusted to collect and
store high-frequency consumption data, while the third-party
energy service providers are not trusted to access identifiable
energy consumption traces directly. Instead, they are only
allowed to access pseudonymized consumption traces or the

 
 

 

 

 

 

 

 

Table 1.  Meter data of ten households within a day 

 

 

 

 

 

 

 

 

 

 

 

Table 2.  Level data of ten households within a day 

 

MID T1 T2 T3 T4 T5 T6 … T48 

1 1.212 1.028 0.965 0.876 0.96 0.758 … 1.254 

2 0.073 0.067 0.047 0.075 0.069 0.088 … 0.064 

3 0.985 1.006 0.949 0.955 0.996 0.956 … 0.926 

4 0.192 0.147 0.201 0.141 0.206 0.14 … 0.162 

5 0.378 0.363 0.355 0.425 0.304 0.189 … 0.349 

6 0.257 0.157 0.298 0.299 0.252 0.25 … 0.862 

7 0.481 0.34 0.378 0.276 0.204 0.202 … 0.131 

8 0.063 0.129 0.103 0.061 0.127 0.095 … 0.125 

9 0.2 0.215 0.264 0.246 0.228 0.225 … 0.215 

10 0.395 0.417 0.362 0.338 0.385 0.598 … 0.602 

MID T1 T2 T3 T4 T5 T6 … T48 

1 4 4 3 3 3 3 … 4 

2 1 1 1 1 1 1 … 1 

3 3 4 3 3 3 3 … 3 

4 1 1 2 1 2 1 … 1 

5 2 2 2 3 2 1 … 2 

6 2 1 2 2 2 2 … 3 

7 3 2 2 2 2 2 … 1 

8 1 1 1 1 1 1 … 1 

9 2 2 2 2 2 2 … 2 

10 2 3 2 2 2 3 … 3 

Fig. 1. One day consumption traces of 10 households:the left table shows
the exact consumptions in kW; in the right table, actual readings are replaced
with attacker-defined consumption levels.

aggregate values by querying the supplier’s data server. In
the latter case, we adopt the honest-but-curious adversary
model (a.k.a. semi-honest model) to describe their behavior.
In this model, all parties are assumed to follow the protocol
properly (“honest”). Meanwhile, they may keep other parties’
inputs and/or intermediate computing results, and actively
manipulate these information to infer personal information
about others (“curious”). Honest-but-curious adversaries keep
the system functioning properly so that they are not identified
by intrusion/abnormal detection mechanisms.

The remaining privacy threats. There are primarily two
means for the supplier to provide access to consumption traces
to other energy service providers. First, after removing iden-
tifiable information, the supplier provides the pseudonymized
consumption traces to external stakeholders, such as contrac-
tors of the supplier providing analysis services or energy
service providers making secondary usage of the metering data.
However, recent studies show that time series attributes may
become quasi-identifiers from which an adversary can infer a
customer’ identity [7] and undo pseudonymization. The goal of
the adversary is to link the identity of a target user to his energy
consumption trace by customer-specific behavior patterns and
unusual energy events (i.e., “behavior anomaly”). A successful
attack will allow all the existing deduction attacks to be applied
in smart metering. [7] requires the attacker to observe unusual
physical events occurring at the target household and attribute
consumption traces to individuals based on the rarity of an
anomaly. In this work, we further relax the requirements of
auxiliary information on the rare discriminative event for the
attackers. We assume the attacker can observe the activities of
a target household, and classify its energy consumption into
l levels based on a variety of factors such as the number
of people at home, the number of lights switched on, the
charging of an electric vehicle, temperature, etc. The proposed
attack and analysis show that even with the relaxed auxiliary
information, the pseudonymization consumption traces are at
risk of being attributed to individuals. As a result, enhanced
PET technologies such as k-anonymity based anonymization
and sanitization are needed to protect users’ privacy in this type
of data sharing in smart metering. In this way, users’ privacy
expectations are satisfied when consumption data is released
or shared externally.

Second, in certain applications, energy service providers
need to access raw consumption records to perform (tempo-
ral or spatial) aggregate operations. This introduces privacy
concerns at both the supplier and the third-party providers.
For the supplier, the metering data is considered proprietary
not only from the privacy protection requirement but also



from business operation perspective. It is impractical to release
the collected raw data directly to other parties. Meanwhile,
third-party provider rely on the supplier to provide accurate
consumption data for secondary usage. To meet the needs, the
supplier provides on-demand access by answering aggregate
queries from legitimate external parties. On the other hand,
third-party providers also want to hide their intentions/business
interests from being learned by the supplier. In this paper, we
develop a set of privacy-preserving operations to allow third-
party providers to privately retrieve consumption data from the
supplier with as small as possible communication complexity.

III. PRELIMINARIES AND RELATED WORKS

Privacy issues with smart metering data. The primary concern
appears to be the inference attack – AMI data could be
utilized to infer behaviors, habits and events in the household,
e.g., [8], [9] etc. This category of attacks, also known as
profiling attacks, mostly employ rule-based, ontology-based
[8], supervised/unsupervised learning [9], [10], or information
theoretic [11] approaches. User profiling could be launched
at various layers: (i) utilizing the electrical circuit features
at physical layer – the conventional NIALM [10], [12]; (ii)
observing/eavesdropping of device status and control data,
metering data at smart grid communication layer [13]; (iii)
employing temporal electricity usage data at data management
layer [9], or combination of multiple types of data [8]. Coun-
termeasures have been proposed for privacy protection. Most
of the existing solutions aim to prevent identifiable, raw high-
frequency data from been collected or accessed by untrusted
parties.
Privacy issues with AMI data collection process. Undesired
information disclosure to the honest-but-curious parties during
the AMI data collection process is also considered as privacy
breaches. For instance, several approaches have been proposed
to employ secure multi-party computation and cryptographical
methods to allow intermediate parties to perform operations
without accessing raw usage data from other peers. Mean-
while, privacy-preserving metering/billing have been intro-
duced to enable time-of-use billing without collecting raw
usage data [14], [15]. The correctness of billing could be
proved from technical perspective, however, it remains ques-
tionable whether the utilities and the customers would accept
this solution.
Homomorphic encryption. Homomorphic encryption repre-
sents a group of semantically-secure public/private key en-
cryption methods, in which certain algebraic operations on
plaintext can be performed with cipher. Mathematically, given
a homomorphic encryption scheme E(), ciphertext E(x) and
E(y), we are able to compute E(x?y) without decryption, i.e.
without knowing the plaintext or private keys. ? represents
an arithmetic operation such as addition or multiplication.
Well-known homomorphic encryption schemes include: RSA,
ElGamal [16], Paillier [17], Boneh-Goh-Nissim [18], and etc.
The Paillier cryptosystem [17] is additively homomorphic; the
El Gamal [16] cryptosystem is multiplicatively homomorphic;
and the Boneh-Goh-Nissim cryptosystem approach [18] sup-
ports one multiplication between unlimited number of addi-
tions. More recent approaches provide full support of both
addition and multiplication at higher computation costs [19],
[20]. We omit further mathematical details in this paper, since
they are out of our scope.

Secure multi-party computing. The original problem of secure
two/multi-party computation was introduced in [21]. In this
problem, multiple parties compute the value of a public func-
tion on private variables, without revealing the values of the
variables to each other. Zero-knowledge proof [22] addresses
the problem of proving the veracity of a statement to other
parties without revealing anything else. They are the earliest
ancestors of privacy preserving multi-party computing.

IV. PRIVACY-PRESERVING DATA SHARING IN SMART
GRID SYSTEMS

A. Data anonymization and sanitization

In this section, we first introduce a level-based approach
that can be used by the adversary to relax the accuracy re-
quirement of auxiliary information needed for re-identification
attacks. Then, we present a model based on information gain
to theoretically assess the risk of such attacks.

To pseudonymize a smart metering dataset, identifiable
information of each contains consumption trace is removed and
stored separately in another database. In the pseudonymized
consumption dataset D, each record contains three parts: (1)
a pseudonym ID; (2) a set of quasi-identifier attributes at d
different time instants, denoted as A1,..., Ad; and (3) a set of
sensitive attributes, denoted as AS as an entirety [23], [24].
In the smart metering setting, the quasi-identifiers are energy
consumption data at a selected set of time instants, and the
sensitive attributes are energy consumption data of (a subset of)
the following time instants that is of interest to the adversary.
For instance, in preparing for a burglary, the burglar needs
to monitor the victim physically for a long time to obtain a
repetitive living pattern of the target to derive the best time for
burglary. With a successful re-identification attack, a burglar
can easily obtain statistics of the target’s long-term energy
consumption behavior to derive the living pattern and save
a lot of effort in spying on the target.

It is believed that an attacker is capable of performing
privacy-invading inference attacks only if he has knowledge of
both databases. Hence, releasing pseudonymized consumption
dataset is considered secure. However, from our preliminary
exploration with the ISSDA CER Smart Metering dataset,
we have discovered that unique usage patterns are almost
ubiquitous. Therefore, it is possible for an attacker to associate
time series consumption data with offline auxiliary knowl-
edge, and effectively attribute consumption traces to individual
users/households.

Example 1: When a burglar observes two households in a
same neighborhood, he finds that people at household 1 left for
gym at 8:30 pm for half an hour, while household 2 did laundry
around 7:00 pm. From home appliance energy usage data [25],
we know that 1-hour launch (30-minute washer and 30-minute
dryer) introduce 1.9kW on average for household 2, while
turning off a plasma TV, two computers and five incandescents
for half an hour may save household 1 0.6kW and cause a
trough in its evening energy usage. Assume the burglar obtains
three consumption traces at a resolution of 48 (i.e., sampling
every 30 minutes) as shown in 2, his observations of two
households provide ample auxiliary information for him to link
consumption trace 1 and 3 to households 1 and 2, respectively.



Fig. 2. 100-day average consumption traces of one household reflect level-
based consumption patterns.

To understand the potential risks in a published/shared
pseudonymized consumption dataset, we first take an entropy-
based approach to measure the discriminative information
carried in the quasi-identifier attributes. In particular, we
denote the known consumption trace of an end user by
X = {x1,x2, ...,xn}, where xi is the measurements of day i.
With a resolution of d, we represent each xi as a vector of d
dimensions such that xi = {xi1 , xi2 , ..., xid}. Each dimension
or a combination of dimensions of xi could become the quasi-
identifier attributes.

Re-identification attacks. Attackers can obtain knowledge
about the values of quasi-identifiers from offline channels such
as physically observing the activities (leaving or returning to
home, the number of people at home) and power consumption
indicators (lights switched on/off, smart car charged, temper-
ature, etc.) of the target household. The auxiliary information
can be compared with publicly available statistical data to
determine an energy consumption level Eli of the target
household at time Ti. As an example, a coarsely defined energy
consumption level may contain three levels: high, medium,
and low. As shown in Figure 2, the average consumption
(three traces of 100 days) of one household demonstrates clear
consumption patterns with matching levels. To improve the
success rate, the attacker should define the consumption levels
as fine-grained as possible to provide discriminative indication
for identification, however, the increasing granularity tends
to be error-prone. We suggest a reasonable value for the
consumption level should be between 3 and 10 (for example,
in our experiment the consumption is classified into 7 levels).
Then, the attacker replaces the data in the consumption traces
of each household that fall into the range of level Eli with its
level number li. For example, the original consumption dataset
(left table in Figure 1) is now transformed into level-based
consumptions (right table in Figure 1).

Assessing risk using information gain. To quantify the
amount of information provided by an attribute (or an at-
tribute set), we analyze the problem from an information
gain perspective. As the goal of the attacker is to attribute a
particular consumption trace to an individual, without any prior
knowledge, the attacker considers all the traces equally likely

Fig. 3. Information gain with a single attribute.

to be linked to the target. The average amount of information
needed by the attacker (i.e., the expected information gain for a
successful identification) is: E(I(X)) = H(X) = −log2(1/n)
for n households. When the attacker detects the value of
attribute Ai as v, the conditional entropy is calculated as:
H(X|Ai = v) = −log2(1/NAi=v), where NAi=v is the
number of traces whose attribute Ai has a value of v. To
assess the actual information gain of knowing an Attribute
Ai, we can calculate: I(X;Ai) = H(X) −

∑
v∈VA

(p(Ai =
v)H(X|Ai = v)). In a dataset of no privacy risk, I(X;Ai)
should be 0. In a poorly anonymized dataset (as the one in
Figure 1), the information gain from knowing an attribute is
H(X) and this attribute is considered a quasi-identifier. In the
CER smart metering dataset, the consumption traces have a
resolution of 48 (half hourly). Each of the 48 attributes may
be used as quasi-identifier attributes. We studied a dataset of
ten households on day xi and measured the information gain
for each attribute, as shown in Figure 3.

By defining the consumption level, we release the re-
quirements for attacker’s external knowledge, however, it
also reduces the chance of successful re-identification. The
attacker can employ multiple attributes (consecutive or not)
in the attack. For example, when the attacker knows the
value of A1 and A2, the information gain is denoted as
I(X;A1, A2) = H(X) − H(X|A1, A2). In the current step,
we do not consider time patterns in consecutive attributes,
therefore, when A1 and A2 are independent, we can further
represent I(X;A1, A2) = H(X) − H(X|A1) − H(X|A2).
Intuitively, the more attributes are included, the more likely
the attribute set becomes a quasi-identifier attribute set. As the
attribute dimension is bounded by resolution, the more fine-
grained data, the higher the risk it is exposed to.

Data anonymization. We adopt the concept of k-anonymity
[24], [26] to handle temporal data so that records are placed
into equivalent groups with at least k consumption traces.
Thus, a dataset D is defined as “k-anonymized” if any
target consumption trace T in D with quasi-identifier at-
tribute set {A1, ..., Ar} ⊆ {A1, ..., Ad}, where {A1, ..., Ar} =
{v1, ..., vr}, cannot be distinguished from other k−1 consump-
tion traces. To anonymize the dataset, quasi-identifier attributes
are considered as a vector and mapped to the high-dimensional
feature space. Each consumption trace is represented as a
node in the r-dimensional space. Here we give an example
in Figure 4 to fulfill 5-anonymized for the original dataset in
Figure 1.



 
 

 

 

 

 

 

 

Table 2.  Level data of ten households within a day 

Table 3.  Anonymized data of 10 households within a day 

Level 1 [0, 0.2) 

Level 2 [0.2, 0.4) 

Level 3 [0.4, 1) 

Level 4 [1, 1.3) 

Level 5 [1.3, 1.7) 

Level 6 [1.7, 2.6) 

Level 7 [2.1, 6) 

 

Table 4.  Power consumption level defination 

 

MID T1 T2 T3 T4 T5 T6 … T48 

1 1.212 1.028 0.965 0.876 0.96 0.758 … 1.254 

2 0.073 0.067 0.047 0.075 0.069 0.088 … 0.064 

3 0.985 1.006 0.949 0.955 0.996 0.956 … 0.926 

4 0.192 0.147 0.201 0.141 0.206 0.14 … 0.162 

5 0.378 0.363 0.355 0.425 0.304 0.189 … 0.349 

6 0.257 0.157 0.298 0.299 0.252 0.25 … 0.862 

7 0.481 0.34 0.378 0.276 0.204 0.202 … 0.131 

8 0.063 0.129 0.103 0.061 0.127 0.095 … 0.125 

9 0.2 0.215 0.264 0.246 0.228 0.225 … 0.215 

10 0.395 0.417 0.362 0.338 0.385 0.598 … 0.602 

MID T1 T2 T3 T4 T5 T6 … T48 

1 4 4 3 3 3 3 … 4 

2 1 1 1 1 1 1 … 1 

3 3 4 3 3 3 3 … 3 

4 1 1 2 1 2 1 … 1 

5 2 2 2 3 2 1 … 2 

6 2 1 2 2 2 2 … 3 

7 3 2 2 2 2 2 … 1 

8 1 1 1 1 1 1 … 1 

9 2 2 2 2 2 2 … 2 

10 2 3 2 2 2 3 … 3 

MID T1 T2 T3 T4 T5 T6 … T48 
1 [0.257-1.212] [0.157-1.028] [0.298-0.965] [0.299-0.955] [0.252-0.996] [0.25-0.956] … [0.602-1.254] 

2 [0.063-0.481] [0.067-0.363] [0.047-0.378] [0.061-0.425] [0.069-0.304] [0.088-0.225] … [0.064-0.349] 

3 [0.257-1.212] [0.157-1.028] [0.298-0.965] [0.299-0.955] [0.252-0.996] [0.25-0.956] … [0.602-1.254] 

4 [0.063-0.481] [0.067-0.363] [0.047-0.378] [0.061-0.425] [0.069-0.304] [0.088-0.225] … [0.064-0.349] 

5 [0.063-0.481] [0.067-0.363] [0.047-0.378] [0.061-0.425] [0.069-0.304] [0.088-0.225] … [0.064-0.349] 

6 [0.257-1.212] [0.157-1.028] [0.298-0.965] [0.299-0.955] [0.252-0.996] [0.25-0.956] … [0.602-1.254] 

7 [0.063-0.481] [0.067-0.363] [0.047-0.378] [0.061-0.425] [0.069-0.304] [0.088-0.225] … [0.064-0.349] 

8 [0.063-0.481] [0.067-0.363] [0.047-0.378] [0.061-0.425] [0.069-0.304] [0.088-0.225] … [0.064-0.349] 

9 [0.063-0.481] [0.067-0.363] [0.047-0.378] [0.061-0.425] [0.069-0.304] [0.088-0.225] … [0.064-0.349] 

10 [0.257-1.212] [0.157-1.028] [0.298-0.965] [0.299-0.955] [0.252-0.996] [0.25-0.956] … [0.602-1.254] 

Fig. 4. 5-anonymized consumption traces.

Example 2: To achieve 5-anonimity, we first adopt the k-means
clustering algorithm to partition 10 traces into 2 clusters based
on Euclidean distance. The number of clusters is determined
by the degree of anonymization, e.g., at least 5 traces are
needed in each cluster in this example. Then, the numerical
values of each attribute in the consumption data is generalized
into range values, e.g., 0.132kW→ [0.130, 0.135) kW. Finally,
we select the minimal and maximal value of each attribute to
generate the range.

Discussions. Conventional k-anonymity approaches generalize
data into value ranges to yield k similar records in each group.
Different from conventional k-anonymity algorithms, we aim
to find a balance in generalization of two dimensions, data
values and indexes. Generalization should also be applied on
sequence indexes by reducing data resolution to covert high-
frequency data into lower frequency. It should be application-
driven based on the needs of the applications. Pattern is critical
for time-series data’s users. For example, a electrical company
can determine the best time to maintain a user’s electrical
devices by studying his power consumption pattern. However,
the conventional k-anonymity suffers significant pattern loss,
so we will apply so-called (k,p)-anonymization which was
proposed in [24] to consumption traces to guarantee pattern-
preserving anonymity, for example, at least p traces have the
same pattern in a group with k indistinguishable members.

B. Secure multi-party computing

As discussed previously, in certain scenarios, the supplier
does not share any raw data with external stakeholders. For
instance, the utility is prohibited by privacy regulations or
service agreements from sharing any type of raw data with
external parties, or a third-party application requires to execute
aggregate operations on the exact data than on the sanitized
data. To address such needs, the supplier can provide on-
demand access to third parties, who are allowed to submit
temporal or spatial aggregate queries without violating privacy
requirements. However, third-party service providers may not
want to describe to the supplier the details of its usage of
the data (e.g., scope of interest, proprietary algorithms/models
for data processing). This requires the supplier to support
private information retrieval in the database. In particular, we
consider two types of applications: (1) the data processing
model/algorithm at the external collaborator is public, while
parameters in the model are private; (2) both the data process-
ing model and the parameters are private.

We extend secure multi-party computation techniques [27]–
[29] to realize private function evaluations at the supplier’s
database (denoted as “server”) for third-party applications
(denoted as “client”). In particular, each client defines its
own private function F , in the form of F (s,Y) = (s1 ·

H(Y1))
⊕
...

⊕
(si · H(Yi)), applying homomorphic opera-

tions on the results of H(·). s is a parameter vector with
binary entries encrypted with the homomorphic public key of
the client. The client includes both valid operations and dummy
operations in function F so that the server cannot infer the
right form of F . The parameter for the dummy operations is
an encrypted “0”, so the results of the dummy operations will
not be included in the final result of F . In this way, the privacy
of the client is protected.

To protect the privacy of the energy consumer, the server
needs to carefully define the input elements Y to ensure that
operations H(·) on Y will not violate the privacy requirements.
In this work, we consider to support temporal and spatial
aggregate queries, and define atomic input element as aggre-
gate consumption of multiple meters or aggregate consumption
of a same meter within a time interval. In particular, the
server prepares metadata, as shown in Figure 5, to define
valid element input Y . In the meta-data, raw consumption data
is modeled into a matrix U : each element UHi,tj represents
the consumption data of household Hi at time tj . A 2D-1D
geographic mapping function f : (φ, λ) → U is defined to
convert 2D geographic ranges into a set of household indexes
H = {Hi}, which are located in the given geographic range.
Therefore, U = {UHi,tj} : Hi ∈ H, tj ∈ T, where T is time
intervals. Here, we simply define Y =

∑
UHi,tj

∈U(UHi,tj ). It
can be extended to support more complex operations within
U with additional privacy verification. Each element denotes
a set of smart meters. The server can define element as large
as smart meters in a zipcode, or as small as the smart meter of
a building. The server is responsible for defining elements so
that the combinations of these elements can satisfy all potential
queries from the clients.

Next, we discuss the common operations (H(·)) currently
supported by our scheme. We define and support seven oper-
ations including privacy-preserving selection, weighted selec-
tion, simple sum, weighted sum, mean and variance, and will
extend to support more in the future.

Privacy-preserving selection. In this operation, H is a selec-
tion statement to select households in {Yin,tj} and request
consumption data of each household at time tj . To hide the
parameters of the private function F , third-party application
generates its own S. Once the server receives the query with
encrypted parameters, it cannot tell if an element {Yin,tj}
is actually requested or just a dummy element. Then, the
server follows the statement in H to obtain numerical values
and conduct the operation in F to get a reply in ciphertext
form. Finally, the application recover the result with its private
key. As the operation at the server is in ciphertext form,
the selection is unknown to the supplier. In summary, this
operation takes two communication steps, n homomorphic
multiplications at the server, and n homographic encryptions
and 1 homographic decryption at the application server. We did
simulations to evaluate the overhead of the proposed scheme,
and on average it will take the application server 2.48 ms for
each encryption and 2.75 ms for each decryption operation,
and it will take the data server 8.55 ms for the aggregation of
100 results.

Weighted selection. Similar as privacy-preserving selection,
per-range weights can be supported with an application-



Fig. 5. Data preparation and meta-data publishing.

generated weight matrix Wi,j . Each entry wi,j should be an
integer.

Simple sum, mean & variance. Simple sum is defined
as

∑
si · Yi,tj . From simple sum, mean can be derived

in two steps, such that external applications get the sum
first, and divide by number of households in the selec-
tion. Similarly, variance is supported in two steps: first sum
so that external application gets the mean; then perform∑

(Si × Yi,tj −m)× (Si × Yi,tj −m).

More operations, e.g., projection, could be supported if they
are allowed by the homomorphic cryptosystem, but we do not
discuss in the paper due to length limit.

V. CONCLUSION

In smart grid data management, high-frequency usage data
collected by AMI often contains sensitive information about
the end consumers. When such data is shared by the utilities
with external stakeholders, consumer privacy is at risk. In this
paper, we present a set of comprehensive solutions for privacy-
preserving smart data sharing. In particular, we prevent exter-
nal stakeholders from obtaining identifiable consumption data,
while still enabling them to perform their respective functions.
We have presented solutions based on data sanitization, as well
as solutions based on secure multi-party computing. We have
performed experiments with real-world energy consumption
data. The results show that the proposed solutions are both
effective and efficient.

VI. ACKNOWLEDGMENT

This work was partially supported by NSF under award
NSF0073319, EPS0903806 and matching support from the
State of Kansas through the Kansas Board of Regents.

REFERENCES

[1] A. Molina-Markham, P. Shenoy, K. Fu, E. Cecchet, and D. Irwin,
“Private memoirs of a smart meter,” in Proceedings of the 2nd ACM
workshop on embedded sensing systems for energy-efficiency in build-
ing. ACM, 2010, pp. 61–66.

[2] G. Kalogridis, R. Cepeda, S. Denic, T. Lewis, and C. Efthymiou,
“Elecprivacy: Evaluating the privacy protection of electricity manage-
ment algorithms,” IEEE Trans. on Smart Grid, vol. 2, no. 4, pp. 750–
758.

[3] F. D. Garcia and B. Jacobs, “Privacy-friendly energy-metering via
homomorphic encryption,” in Proc. STM’11, 2011, pp. 226–238.

[4] C. Rottondi, G. Verticale, and A. Capone, “A security framework
for smart metering with multiple data consumers,” in INFOCOM
Workshops, march 2012, pp. 103 –108.

[5] ISSDA, “CER smart metering project: Electricity customer behaviour
trial,” http://www.ucd.ie/issda/data/commissionforenergyregulationcer/.

[6] J.-M. Bohli, O. Ugus, and C. Sorge, “A privacy model for smart
metering,” in Proceedings of the First IEEE Workshop on Smart Grid
Communications (in conjunction with ICC 2010), 2010.

[7] M. Jawurek, M. Johns, and K. Rieck, “Smart metering de-
pseudonymization,” in ACSAC, 2011, pp. 227–236.

[8] H. S. Cho, T. Yamazaki, and M. Hahn, “Aero: extraction of user’s
activities from electric power consumption data,” IEEE Transactions
on Consumer Electronics, vol. 56, no. 3, pp. 2011–2018, 2010.

[9] M. A. Lisovich, D. K. Mulligan, and S. B. Wicker, “Inferring personal
information from demand-response systems,” Security & Privacy, IEEE,
vol. 8, no. 1, pp. 11–20, 2010.

[10] M. Zeifman, “Disaggregation of home energy display data using proba-
bilistic approach,” IEEE Trans. on Consumer Electronics, vol. 58, no. 1,
pp. 23–31, 2012.

[11] S. R. Rajagopalan, L. Sankar, S. Mohajer, and H. V. Poor, “Smart meter
privacy: A utility-privacy framework,” in IEEE SmartGridComm, 2011,
pp. 190–195.

[12] M. Zeifman and K. Roth, “Nonintrusive appliance load monitoring:
Review and outlook,” IEEE Transactions on Consumer Electronics,
vol. 57, no. 1, pp. 76–84, 2011.

[13] D. Li, Z. Aung, J. Williams, and A. Sanchez, “P3: Privacy preservation
protocol for appliance control application,” in IEEE SmartGridComm.
IEEE, 2012, pp. 294–299.

[14] A. Rial and G. Danezis, “Privacy-preserving smart metering,” in Pro-
ceedings of the 10th annual ACM workshop on Privacy in the electronic
society. ACM, 2011, pp. 49–60.

[15] C.-I. Fan, S.-Y. Huang, and W. Artan, “Design and implementation
of privacy preserving billing protocol for smart grid,” The Journal of
Supercomputing, pp. 1–22, 2013.

[16] T. E. Gamal, “A public key cryptosystem and a signature scheme based
on discrete logarithms,” in CRYPTO, 1985, pp. 10–18.

[17] P. Paillier, “Public-key cryptosystem based on composite degree residu-
osity classes,” in Proceedings of Eurocrypt ’99. Springer-Verlag, 1999,
pp. 223–238.

[18] D. Boneh, E. Goh, and K. Nissim, “Evaluating 2-dnf formulas on
ciphertexts,” in Proc. of Theory of Cryptography, 2005, pp. 325–341.

[19] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
STOC. New York, NY, USA: ACM, 2009, pp. 169–178.

[20] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully
homomorphic encryption over the integers,” in EUROCRYPT’10, 2010.

[21] A. C. Yao, “Protocols for secure computations,” in IEEE SFCS. Wash-
ington, DC, USA: IEEE Computer Society, 1982, pp. 160–164.

[22] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity
of interactive proof-systems,” in STOC ’85, 1985, pp. 291–304.

[23] R. G. Pensa, A. Monreale, F. Pinelli, and D. Pedreschi, “Pattern-
preserving k-anonymization of sequences and its application to mobility
data mining,” Privacy in Location-Based Applications, 2008.

[24] X. Shang, K. Chen, L. Shou, G. Chen, and T. Hu, “(k, p)-anonymity:
towards pattern-preserving anonymity of time-series data,” in CIKM,
2010, pp. 1333–1336.

[25] G. Electric, “How much power do your appliances use?”
http://visualization.geblogs.com/visualization/appliance.

[26] L. Sweeney, “k-anonymity: a model for protecting privacy,” Int. J.
Uncertain. Fuzziness Knowl.-Based Syst., vol. 10, no. 5, 2002.

[27] V. Kolesnikov and T. Schneider, “A practical universal circuit con-
struction and secure evaluation of private functions,” in Financial
Cryptography and Data Security. Springer, 2008, pp. 83–97.

[28] R. Canetti, Y. Ishai, R. Kumar, M. K. Reiter, R. Rubinfeld, and
R. N. Wright, “Selective private function evaluation with applications
to private statistics,” in PODC, vol. 1, 2001, pp. 293–304.

[29] A. Paus, A.-R. Sadeghi, and T. Schneider, “Practical secure evaluation of
semi-private functions,” in Applied Cryptography and Network Security.
Springer, 2009, pp. 89–106.


