
3942 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 59, NO. 8, OCTOBER 2010

An Open-System Transportation Security Sensor
Network: Field-Trial Experiences
Daniel T. Fokum, Student Member, IEEE, Victor S. Frost, Fellow, IEEE,

Martin Kuehnhausen, Student Member, IEEE, Daniel DePardo, Senior Member, IEEE,
Angela N. Oguna, Student Member, IEEE, Leon S. Searl, Edward Komp, Matthew Zeets,

Daniel D. Deavours, Member, IEEE, Joseph B. Evans, Senior Member, IEEE, and
Gary J. Minden, Senior Member, IEEE

Abstract—Cargo shipments are subject to hijack, theft, or tam-
pering. Furthermore, cargo shipments are at risk of being used
to transport contraband, potentially resulting in fines to shippers.
The Transportation Security Sensor Network (TSSN), which is
based on open software systems and service-oriented architecture
principles, has been developed to mitigate these risks. Using com-
mercial off-the-shelf hardware, the TSSN can detect and report
events that are relevant to appropriate decision makers. However,
field testing is required to validate the system architecture and
to determine if the system can provide timely event notification.
Field experiments were conducted to assess the TSSN’s suitabil-
ity to monitor rail-borne cargo. Log files were collected from
these experiments and were postprocessed. We present the TSSN
architecture and results of field experiments, including the time
taken to report events using the TSSN and the interaction between
various components of the TSSN. These results show that the
TSSN architecture can be used to monitor rail-borne cargo.

Index Terms—Cargo security, mobile rail network (MRN),
service-oriented architecture (SOA), trade data exchange (TDE),
transportation security, virtual network operations center (VNOC).

I. INTRODUCTION

IN 2006, the Federal Bureau of Investigation (FBI) estimated
that cargo theft costs the U.S. economy between $15 billion

and $30 billion per year [1]. Cargo theft affects originators,
shippers, and receivers as follows. Originators and receivers
need a reliable supply chain to deliver goods in a timely and
cost-effective manner. Shippers hold liability and insurance
costs for shipments, which are proportional to the rate of theft.
Finally, receivers are affected by out-of-stock and scheduling
issues due to cargo theft. Most nonbulk cargo travels in shipping
containers. Container transport is characterized by complex

Manuscript received October 9, 2009; revised March 10, 2010 and July 3,
2010; accepted July 16, 2010. Date of publication July 23, 2010; date of current
version October 20, 2010. This work was supported in part by Oak Ridge
National Laboratory (ORNL)—Award Number 4000043403. This material is
also based in part upon work supported while V. S. Frost was serving at the
National Science Foundation. This work was conducted in collaboration with
EDS, an HP company, and by Kansas City SmartPort. The review of this paper
was coordinated by Dr. L. Chen.

The authors are with the Information and Telecommunication Technology
Center, The University of Kansas (KU), Lawrence, KS 66045 USA (e-mail:
fokumdt@ittc.ku.edu; frost@ittc.ku.edu; mkuehnha@ittc.ku.edu; ddepardo@
ittc.ku.edu; oguna@ittc.ku.edu; searl@ittc.ku.edu; komp@ittc.ku.edu;
mzeets@ittc.ku.edu; deavours@ittc.ku.edu; evans@ittc.ku.edu; gminden@ittc.
ku.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVT.2010.2060504

interactions between shipping companies, industries, and lia-
bility regimes [2]. Deficiencies in the container transport chain
expose the system to attacks such as the commandeering of a
legitimate trading identity to ship an illegitimate or dangerous
consignment, hijack, or the theft of goods. Insufficiencies in
these areas can be overcome by creating secure trade lanes or
trusted corridors, particularly at intermodal points, e.g., at rail
or truck transitions. Research and development is under way to
realize the vision of trusted corridors.

This paper focuses on advanced communications, network-
ing, and information technology applied to creating trusted
corridors. The objective of this paper is to provide the basis
needed to improve the efficiency and security of trade lanes by
combining real-time tracking and associated sensor information
with shipment information. One crucial research question that
must be answered to attain this objective is how we can create
open technologies that will allow continuous monitoring of
containers by integrating communications networks, sensors,
and trade and logistics data. This integration must occur within
an environment composed of multiple enterprises, owners, and
infrastructure operators.

To achieve improved efficiency and security of trade lanes,
we have developed the Transportation Security Sensor Network
(TSSN) architecture, which uses service-oriented architecture
(SOA) [3] principles, to monitor the integrity of rail-borne
cargo shipments. The TSSN is an open system where different
components can be provided by different vendors. The TSSN is
composed of a trade data exchange (TDE) [4], a virtual network
operations center (VNOC), and a mobile rail network (MRN).
The functions of each of these components are discussed in
more detail in Section II. The TSSN detects events, integrates
the event type from the train in the field with logistics infor-
mation, and then reports events that are important to decision
makers by using networks with commercial links. Decision
makers want to be notified of events within 15 min [5] so that
they can take effective action. For the TSSN to be deployed, we
need to validate its architecture and understand the timeliness
of the system response. The works of Arsanjani et al. [6] and
Saiedian and Mulkey [7] show that SOAs introduce overhead.
As a result, we want to determine whether an SOA-based
system, e.g., the TSSN, provides timely event notification.
TSSN event notification is also affected by unpredictable packet
latency on commercial networks and the use of e-mail and Short
Message Service (SMS) [8] for event notification. Thus, we

0018-9545/$26.00 © 2010 IEEE

FOKUM et al.: OPEN-SYSTEM TRANSPORTATION SECURITY SENSOR NETWORK: FIELD-TRIAL EXPERIENCES 3943

have designed and implemented hardware and software needed
to realize a prototype of the TSSN and carried out experiments
[9] to characterize the system, particularly the end-to-end time
between event occurrence and decision-maker notification
using SMS or e-mail, as well as the impact of SOA overhead.

In this paper, we provide a high-level description of the
TSSN architecture and document two field experiments that
were carried out to demonstrate that sensors and software
based on an open SOA can be used to monitor cargo in
motion. Our experiments focused on determining the time from
event occurrence to decision-maker notification and on testing
functionality between the component services of the prototype
TSSN. Our experimental results show that decision makers
can be notified of events on the train in a timely manner by
using the prototype TSSN architecture. The rest of this paper is
organized as follows. In Section II, we describe the TSSN archi-
tecture, including the components and the prototype hardware
implementation. Section III discusses experiments that were
conducted to assess the suitability of the TSSN system for cargo
monitoring. In Section IV, we discuss the framework used
to postprocess the log files from our experiments. Section V
presents empirical results that show the interaction between
various components of the TSSN. Refinements to the TSSN,
given our field-trial experiences, are discussed in Section VI.
In Section VII, we present related research on monitoring
trains and securing shipping containers in motion. Section VIII
provides concluding remarks.

II. SYSTEM ARCHITECTURE

To achieve the vision of a trusted corridor, we have designed
and implemented a prototype of the TSSN architecture. The
detailed architecture of the TSSN, including system extensibil-
ity, is found in [10], whereas this section gives an overview of
the TSSN. The architectural details discussed here are impor-
tant in understanding the experiments and results presented in
Sections III and V, respectively.

The SOA and web services used in the TSSN enable the
integration of different systems from multiple participating
partners. Moreover, the use of SOA and web services enables
us to enter data once and use those data many times. Us-
ing commercial off-the-shelf (COTS) hardware and networks,
as well as an open systems approach, the TSSN can detect
events and report events that are relevant to shippers and other
decision makers as alarms. Furthermore, the TSSN supports
multiple methods for notifying decision makers of system
events.

The TSSN uses web service specification standards, e.g.,
Web Services Description Language (WSDL) 2.0 [11], Sim-
ple Object Access Protocol (SOAP) 1.2 [12], Web Services
(WS)-Addressing [13], WS-Security [14], and WS-Eventing
[15], which are implemented through Apache Axis2 [16] and
associated modules. These standards are used to exchange
structured information between a web service and a client. The
use of SOAP allows the deployment of platform-independent
interfaces and, thus, a heterogeneous network of web service
platforms. On the other hand, because SOAP and web services
are based on Extensible Markup Language (XML), which

is verbose, there is communication and processing overhead
related to SOAP messages.

The TSSN supports wireless and satellite communica-
tion technologies, e.g., High-Speed Downlink Packet Access
(HSDPA) [17] and Iridium [18]. The TSSN uses the Hypertext
Transfer Protocol (HTTP) for message transport over wired and
wireless links. Finally, the TSSN prototype uses sensors and
readers from Hi-G-Tek [19]. There is also a need to gather log
files to enable system debugging and to capture metrics that can
be used to evaluate system performance. Logging is currently
done at the MRN, VNOC, and TDE using Apache log4j [20].

As shown in Fig. 1, the TSSN system is composed of
three major geographically distributed components: 1) TDE;
2) VNOC; and 3) MRN. Wired links are used between the TDE
and the VNOC, whereas MRN-to-VNOC communications are
done using networks with commercial wireless link compo-
nents. The TDE, VNOC, and MRN are examined in more detail
in the following sections.

A. TDE

The TDE contains shipping data, and it interconnects com-
mercial, regulatory, and security stakeholders. The TDE is
based on a technology-neutral standards-based SOA [4]. The
TDE is hosted on a server with a wired connection to the
Internet. The TDE is geographically separated from the VNOC
and responds to queries from the VNOC. The TDE also stores
event messages that the VNOC sent. Finally, the TDE sends
commands to start and stop monitoring at the MRN and to get
the train’s current location.

In addition to the aforementioned functions, the TDE mon-
itors the progress of shipment and other logistics information.
The TDE captures commercial and clearance data, including
the shipping list, bill of lading, commercial invoice, Certificate
of Origin [e.g., the North American Free Trade Agreement
(NAFTA) Letter], and shipper’s export declaration. It also
validates and verifies data to ensure accuracy, consistency,
and completeness. The TDE monitors the progress of the
documentation and notifies responsible parties when errors or
incompleteness pose the threat of delaying a shipment. The
TDE forwards notification to the customs broker to request
verification of the trade origination documents. The customs
broker accesses the TDE through the same portal to review
and verify the trade documentation. Finally, the TDE allows
for collaboration between participating shippers, third-party
logistics providers, carriers, and customs brokers to define and
document business requirements and risk assessment require-
ments. Real-time cargo-sensing capability is provided to the
TDE through the TSSN. Data from the TDE are combined
with event data from the MRN to provide the decision-maker
complete information with regard to the alarm, e.g., cargo
information, location, and nature of the event.

B. VNOC

The VNOC is the management facility of the TSSN [10],
and it is also the shipper’s interface to the TDE. The VNOC

3944 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 59, NO. 8, OCTOBER 2010

Fig. 1. TSSN architecture.

Fig. 2. VNOC architecture.

can serve as the central decision and connection point for
multiple MRNs. The VNOC consists of services that receive
and process alarms from the MRN and services that notify
decision makers of events. Fig. 2 summarizes the VNOC and its
components.

The functions of the VNOC include forwarding commands
from a client to the MRN to start and stop sensor monitor-
ing, as well as to get the MRN’s current location, receiving
MRN_Alarms from the MRN, obtaining event-associated cargo
information from the TDE in real time, and combining cargo
information obtained from the TDE with an MRN_Alarm to
form a VNOC_Alarm message that is sent by SMS or e-mail

to decision makers, as shown in Figs. 9 and 10. One key role
of the VNOC is to get the right alarm information to the right
personnel in a timely manner and also to prevent personnel from
being overwhelmed with event messages. An AlarmProcessor
service in the VNOC makes decisions, using rules, on which
MRN_Alarms are forwarded to decision makers. For example,
a low-battery alarm is sent to technical staff, whereas an unex-
pected open/close event is sent to system security personnel.
These decisions are made using a complex event processor,
Esper [21], which takes into account shipping information
and data (e.g., geographical location) from current and past
MRN_Alarms.

FOKUM et al.: OPEN-SYSTEM TRANSPORTATION SECURITY SENSOR NETWORK: FIELD-TRIAL EXPERIENCES 3945

Fig. 3. TSSN collector node hardware configuration.

C. MRN

The MRN subsystem is located on the train, and it consists
of hardware and software. The prototype hardware and software
architecture is described as follows.

1) MRN Hardware: The MRN subsystem hardware consists
of a set of wireless shipping container security seals and a TSSN
collector node. The collector node is composed of two major
sections: 1) an electronics suite mounted in the locomotive cab
and 2) a remote antenna assembly that is magnetically attached
to the exterior of the locomotive. Fig. 3 summarizes the key
components of the TSSN collector node.

The electronics suite contains a power inverter, a security seal
interrogation transceiver (SIT), a computing platform, wireless
data modems, a three-axis accelerometer, and a Global Posi-
tioning System (GPS) receiver. The antenna assembly consists
of three communications antennas, a GPS receiver antenna, and
a bidirectional RF amplifier. Coaxial cables connect electronics
suite devices to corresponding antennas.

Container physical security is monitored using a system that
was originally designed for tanker truck security [19]. Con-
tainer security is monitored with active and battery-powered
container seals (sensors) equipped with flexible wire lanyards
that are threaded through container keeper bar lock hasps, as
shown in Fig. 4. These seals had no support for multihop
communications. The TSSN is designed to monitor and report
security seal events, including seal opened, seal closed, tam-
pered seal, seal armed, seal missing, and low-battery warnings.
The SIT communicates with the container seals over a wireless
network, whereas the interrogation transceiver communicates
with a notebook computer through a serial data connection.
Each container seal contains a clock that is periodically updated

Fig. 4. Container seal.

from the SIT, whereas the time on the SIT is updated from the
notebook computer. The mechanism for time synchronization
of the seals is outside the scope of this paper.

To conserve energy, the container seals are asleep most of the
time [22]. About every 3 s, the seals listen for commands from
the interrogation transceiver; however, the frequency at which
the seals listen for commands is configurable. If the sensors are
instructed to more frequently listen for commands, then their
battery lifetimes are reduced, whereas longer intervals between
interrogations result in longer battery lifetimes [22].

Communication between the MRN and the VNOC is ac-
complished using an HSDPA cellular data modem. An Irid-
ium satellite modem is also available and is intended for use
in remote locations that lack cellular network coverage. The
Iridium modem is a combination unit that includes a GPS

3946 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 59, NO. 8, OCTOBER 2010

Fig. 5. MRN collector node architecture.

receiver, which is used to provide the MRN with position
information.

2) MRN Software: The prototype MRN software was im-
plemented using the SOA approach. The software consists
of a SensorNode service, an AlarmProcessor service, and a
Communications service. The SensorNode service finds and
monitors sensors that have been assigned to its control. The
SensorNode service manages several sensor software plug-ins,
e.g., a SIT plug-in and a GPS device plug-in, that do all the
work on behalf of the SensorNode service. During a typical op-
eration, each container seal listens for interrogation command
signals at regular intervals from the interrogation transceiver. In
case that a seal is opened, closed, or tampered with, the seal
immediately transmits a message to the SensorNode service
that runs on the collector node. The message contains the seal
event, a unique seal ID, and the event time. The SensorNode
service passes the seal message as an Alert message to the
service that has subscribed for this information.

The AlarmProcessor service determines which messages
from the SensorNode service require transmission to the VNOC
as MRN_Alarms. Alarm messages include the seal event, the
event time, the seal ID, and the train’s GPS location. The
Communications service uses either HSDPA or Iridium to
report events through the Internet to the VNOC. Fig. 5 shows
the key software functions of the MRN.

III. EXPERIMENTS

This section presents two experiments—a road test and the
short-haul rail trial—that were conducted to assess the suitabil-
ity of the TSSN architecture for cargo monitoring and to collect
data that would be used to guide the design of future cargo-
monitoring systems. It is nontrivial to carry out experiments on
moving freight trains; furthermore, as part of this effort, we
were limited to one chance to carry out experiments from a
train. As a result, the TSSN architecture was tested in several
static and some mobile tests, including the road test with trucks

and the short-haul rail trial. In this section, we present the
experimental objectives, configuration, data collected during
the tests, and issues that were encountered during the tests. The
overarching goals of these experiments are listed as follows:

• to demonstrate the concept of using sensors, communica-
tions, and SOA to monitor cargo in motion using the TSSN
architecture;

• to determine the time from event occurrence to decision-
maker notification in a real field experiment;

• to verify proper operation of the prototype TSSN in a field
environment (proper operation means that all messages
were transmitted, received, and processed as expected and
that decision makers received all correct notification).

Thus, the following items were within the scope of our
experiments: 1) the stability of the communications protocols
between TSSN component services and 2) their timely perfor-
mance. On the other hand, the following items were out of the
scope of this paper:

1) overall system robustness;
2) whole-train monitoring;
3) energy consumption of the sensors;
4) comprehensive security1 issues, e.g., message spoofing;
5) decision-maker response time, given that event notifica-

tion had been delivered.

A. Road Test With Trucks

The first experiment was conducted with two pickup trucks
on local roads to validate the system operation and to deter-
mine if the TSSN collector node reports correct information,
including valid GPS coordinates. One of the pickup trucks used
in the test had the locomotive cab electronics suite in the truck
bed, whereas both trucks had seals in their truck cabins so that
seal open and close events could be emulated and reported.

1Comprehensive security issues will be addressed in the next version of the
prototype.

FOKUM et al.: OPEN-SYSTEM TRANSPORTATION SECURITY SENSOR NETWORK: FIELD-TRIAL EXPERIENCES 3947

Fig. 6. Map of road test with event annotations.

Fig. 7. Logical short-haul rail trial configuration.

The VNOC was located in Lawrence, KS, whereas the TDE
was located in Overland Park, KS. The trucks were driven for
approximately 1.5 h over a 90-km route that began and ended
in Lawrence. The experiment route covered suburban and rural
roads, as well as state highways. During the experiment, the
seals were opened and closed at selected intersections along the
test route that were easily identifiable on Google Maps [23].
Fig. 6 shows a trace of our route and the events overlaid on a
Google map.

B. Short-Haul Rail Trial

Another experiment was carried out using a freight train that
travels from an intermodal facility to a rail yard. Our objectives
in this experiment are listed as follows:

• to determine the performance of the prototype TSSN ar-
chitecture when detecting events on intermodal containers
in a real rail environment;

• to investigate if decision makers could be informed of
events in a timely manner using SMS messages and
e-mails;

• to collect data that will be used in a model to investigate
system tradeoffs and the design of communications sys-
tems and networks for monitoring rail-borne cargo;

• to evaluate the overall system performance to guide the
future development of the TSSN architecture.

Fig. 7 shows the logical system configuration used in the
short-haul rail trial. In this experiment, the VNOC was located
in Lawrence, the TDE was located in Overland Park, and the
MRN was placed on the train. Within the MRN, the TSSN
collector node was placed in a locomotive and was used to
monitor five seals. All communications between the MRN
and the VNOC were passed through a virtual private network
(VPN) for message security. Prior to the start of the experiment,
prototype logistics data were added to the TDE to facilitate
testing.

3948 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 59, NO. 8, OCTOBER 2010

Fig. 8. Collector node and sensor deployment during short-haul rail trial.

Fig. 9. E-mail message received during short-haul trial.

During the short-haul trial, the train traveled for approx-
imately 5 h over a 35-km (22-mi) route. The route, which
traversed both rural and urban areas, was relatively flat, with
a total elevation change of about 100 m. Fig. 8 shows the train
used in the short-haul rail trial, along with the arrangement of
the sensors (wire seals). As shown in Fig. 8, the short-haul
trial train was composed of well cars with a mixture of empty
cars, cars with a single container, and cars with double-stacked
containers. Because we demonstrate a proof of concept and the
sensors in use for this test were COTS devices with no support
for multihop communications, three sensors were placed on
containers on three of the five railcars nearest the locomotive so
that they could be within the radio range of the SIT. One sensor
was placed on the front of the locomotive, whereas the fifth
sensor was kept in the locomotive and was manually opened
and closed while the train was in motion to create events.

During the experiment, the VNOC reported events to deci-
sion makers by using e-mail and SMS messages. The e-mail
messages also include a link to Google Maps so that the exact
location of the incident could be visualized. Fig. 9 shows the
content of one of the e-mail messages that was sent to the
decision makers, and Fig. 10 presents one example of an SMS
message.

In Figs. 9 and 10, the sensor ID, latitude and longitude data,
and event type come from the MRN, whereas the shipment
data come from the TDE. The VNOC combines these pieces

Fig. 10. SMS message received during short-haul trial.

of information into an e-mail message that also includes a link
to Google Maps so that the exact location of the incident can be
visualized.

During the test, the interrogation transceiver lost communica-
tion with the seals for a brief period along the route, whereas the
train was stationary and then regained communications once the
train started moving. We believe that this loss of communica-
tion was due to electromagnetic interference. However, further
investigations are needed to validate this claim.

The short-haul rail trial was a success, because all seal events
were detected and reported to decision makers using both e-
mail and SMS messages. Extensive log files were collected
during the test, and they were postprocessed to obtain data on
the TSSN system performance. The results from postprocess-
ing, which are reviewed in Section V, show that the prototype
system functioned as expected.

Following this experiment, analysis of event logs obtained
from the MRN, VNOC, and TDE revealed that there was a
significant amount of clock drift on the TSSN collector node
during this relatively short trial. The time recorded at the VNOC
for the receipt of a message, in some cases, was earlier than
the time recorded at the TSSN collector node for when the
message was sent. Because time at the VNOC is controlled
by a Network Time Protocol (NTP) [24] server, we conclude
that the clock drift occurs on the TSSN collector node. The
clock drift problem was resolved in the next version of the
TSSN by using a high-performance GPS receiver to get high-
quality local time. Pulse-per-second (PPS) output from the GPS
receiver was used as an input to the NTP server that runs on the
TSSN collector node. Note that, in spite of the clock drift in the
TSSN collector node, we corrected for it in our data analysis
by assuming that data from different parts of the TSSN are
independent, e.g., the time taken to break a seal and generate
an alert message is independent of the time taken to transfer

FOKUM et al.: OPEN-SYSTEM TRANSPORTATION SECURITY SENSOR NETWORK: FIELD-TRIAL EXPERIENCES 3949

Fig. 11. LogParser framework that shows message couples and
transmit–receive pairs.

a message from the MRN to the VNOC. As a result, we can
separately measure the elapsed time in different epochs and
characterize the performance of the TSSN prototype.

IV. POSTPROCESSING OF EXPERIMENTAL DATA

In this section, we discuss the framework for postprocessing
the results of our experiments. During the short-haul rail trial,
we recorded events in log files at the geographically distrib-
uted VNOC, MRN, and TDE. These log files contained data
on message sizes, timestamps, event type, and message type
(incoming/outgoing), among other data elements. Our objective
was to postprocess these files to evaluate the performance of the
prototype TSSN.

Postprocessing of log files was accomplished using a Java li-
brary (LogParser) that was developed in-house. First, the library
read in all available information in each log file, including time,
message size, from and to addresses, and the original SOAP
message. Information from the MRN, VNOC, and TDE log
files in this experiment was combined into a single collection
of log entries. We expect that every message transmitted in the
TSSN should result in at least two log entries: 1) a transmit
log entry (at the originating entity) and 2) a received log entry
(at the receiving entity). The LogParser library identified log
entries as follows:

• transmit–receive pairs, i.e., the outgoing and incoming log
entries with the same SOAP WS-Addressing [13];

• couples, i.e., SOAP request–response message pairs.
Fig. 11 shows the relationship between log entry couples and

transmit–receive pairs. Suppose that the TDE sends a message
to the VNOC, requesting the current MRN location. The circled
1 and 2 in Fig. 11 denote the log entries that represent message
transmission from the TDE and receipt of this same message
at the VNOC. Much of the communication between the client
and the server is based on a request–response model. As a
result, there are two related messages that contain additional
information to establish their relationship:

1) REQUEST — from the client to the server, asking for
something;

2) RESPONSE — from the server back to the client with the
response.

Log entry couples are marked by the records for the outgoing
request and response messages. Consequently, the circled 3
and 5 in Fig. 11 constitute the log entry couple for the VNOC,

forwarding the location request message to the MRN and
the MRN’s origination of a response, respectively. Using the
receive pairs for records 3 and 5, we can also identify entries 4
and 6.

With this framework, programs were written against the
log entry collection to extract the number of messages sent
by each service, the request–response time for messages, the
processing time at either the MRN, VNOC, or TDE, the time
that messages were carried by the network, and message sizes.
Additional information, e.g., latitude, longitude, sensor IDs,
and event timestamps, is extracted from the SOAP message
using XPath expressions. XML Path Language (XPath) is used
to extract information from XML by using path expressions
that traverse the XML tree. Because SOAP is based on XML
and the elements that we use, e.g., Alerts, MRN_Alarms, and
VNOC_Alarms, are also based on XML, the use of XPath is ap-
propriate. XPath also provides basic facilities for manipulation
of strings, numbers, and Booleans [25].

V. RESULTS

This section discusses the results of the experiments pre-
sented in Section III. Most of the results shown here are based
on the short-haul rail trial, because we had more data to analyze.
The results presented here are selected to the following two test
claims.

• All messages between the component services of the
TSSN were transmitted, received, and processed, as
expected.

• Decision makers can be notified of events on the train in a
timely manner.

The rest of this section is organized as follows. Sections V-
A and B present results on message counts for the road test
and short-haul rail trial, respectively. These results test the
claim that all messages between component services of the
TSSN are transmitted, received, and processed as expected.
The rest of the results are based on the short-haul rail trial.
Sections V-C–E study different portions of the time from event
occurrence to decision-maker notification to verify the claim
that the TSSN can notify decision makers of events in a timely
manner. Probability distributions are used in Section V-F to
determine the likelihood of timely decision-maker notification.

Note that, due to significant clock drift in the TSSN collector
node, we can only present an estimate of the time taken for an
event report to travel from the MRN to the VNOC. However,
observed time values can directly be used for other TSSN
component interactions. These results show how the aggregate
time from event detection to decision-maker notification is
distributed among the various services and communication
links in the TSSN. With this information, we can guide system
refinements to further reduce the overall time. Suppose that Tn

indicates when log entry n is made. Then, we can compute the
following metrics:

• Service request processing time. This metric is the time
between when a service receives a request and when a
response message is composed. Using Fig. 11, this time
is T5 − T4.

3950 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 59, NO. 8, OCTOBER 2010

• Request–response time. This metric is the time taken
to get a response from a remote service, including the
processing time. Using Fig. 11, this time is T6 − T3.

• Network time. This metric is the time taken to get a
response from a remote service, excluding the processing
time. Using Fig. 11, this time is computed as T6 − T3 −
(T5 − T4).

Our time analysis in Section V-G examines request–response
messages from VNOC → MRN → VNOC, TDE → VNOC →
TDE, and VNOC → TDE → VNOC.

The last objective of the short-haul rail trial was to collect
data that will be used in a model [26] to support the future
design of systems for monitoring rail-borne cargo and to deter-
mine tradeoffs. Message size is one component of this model.
As a result, Section V-H presents a table that summarizes the
message size statistics between different components of the
TSSN. Note that message sizes can be computed a priori; how-
ever, the distribution of these messages cannot be determined
beforehand.

A. Road Test: Message Counts

The primary goal of the road test was to validate the TSSN
prototype operation and to determine if correct information
is reported by the TSSN collector node, including valid GPS
coordinates. During the road test, a manual record was made
of all seal events, and this written record was compared with
the information generated from the TSSN. This comparison re-
vealed that all open and close events were correctly propagated.
During the approximately 1.5 h-long road test, 76 messages
(72 Alarms, two StartMonitorSensors, and two StopMonitorS-
ensors commands) were exchanged on the VNOC-to-MRN
link, and these messages corresponded with the events that
were recorded in the experiment log. Based on the analysis
of these messages, we conclude that the system operated as
expected. In addition, the experiment revealed that the TSSN
recovered from a dropped HSDPA connection. However, note
that the SIT could not read the sensors when the trucks were
more than 400 m apart on a hilly road. Based on the road
test, we conclude that the TSSN prototype worked as expected
in a mobile scenario, and we combined sensor data from the
MRN in a moving vehicle, with shipment information obtained
from the TDE to generate e-mail messages that were sent to
distributed decision makers. Results from the road test showed
that the TSSN prototype was ready for evaluation in a real rail
environment.

B. Short-Haul Trial: Message Counts

One objective of our postprocessing was to determine if
messages were correctly passed between the TSSN compo-
nents. During the short-haul trial, 203 messages (two StartMon-
itorSensors, two StopMonitorSensors, four SensorNodeStatus,
four SetMonitoringState commands, 30 getLocation queries,
30 Location responses, and 131 MRN_Alarms) were passed
over the VNOC-to-MRN link. Full details on the messages
exchanged are found in [27]. All of the MRN_Alarms that
the VNOC AlarmProcessor received met the necessary rules

Fig. 12. Network times from the VNOC → MRN → VNOC.

so that they could be forwarded to decision makers as SMS
or e-mail messages. The test users who were designated to
receive all event notifications from the TSSN received 131
e-mail messages each.

C. Network Time From the VNOC to the MRN to the VNOC

The network time statistics from the VNOC to the MRN to
the VNOC allow us to draw conclusions on the time taken to
transfer request and response messages from the VNOC to the
MRN, and vice versa. These statistics also allow us to gain
insight into the one-way network delay from the TSSN collector
node on the train to the VNOC in Lawrence—a delay that is
one component of sending an MRN_Alarm message—which
indicates an event at a sensor—from the MRN to the VNOC.
Due to clock drift in the TSSN collector node, we could not
obtain statistics on the one-way network delay from MRN →
VNOC. However, it is reasonable to assume that the MRN ↔
VNOC links are symmetric; thus, the average one-way delay
from the MRN to the VNOC is approximately 1.89 s. Fig. 12 is
a histogram that shows the network time for messages from the
VNOC to the MRN and back to the VNOC.

D. Elapsed Time From Alert Generation to
AlarmReporting Service

The target notification time of security seal events is 15 min
[5]. Thus, demonstrating that the elapsed time from alert gener-
ation to the AlarmReporting service is of the order of several
seconds shows that the time taken to process events within
the TSSN is not an impediment to timely notification. Fig. 13
shows the messages involved in notifying a decision maker of
an event at a seal. This section deals with epochs 2, 3, and 4. Ex-
act values can be computed for the time taken to propagate Alert
and VNOC_Alarm messages, whereas we can use the 1.89 s
estimate from the previous section as a reasonable value for the
time taken to transfer a MRN_Alarm message from the MRN to
the VNOC.

By analyzing the log files, we see that, on the average, it
takes about 2 s for messages to get from the MRN SensorNode
service to the VNOC AlarmReporting service. Thus, we
conclude that the time taken to process events in the TSSN is
not an impediment to timely notification of decision makers.

FOKUM et al.: OPEN-SYSTEM TRANSPORTATION SECURITY SENSOR NETWORK: FIELD-TRIAL EXPERIENCES 3951

Fig. 13. Sequence diagram with messages involved in decision-maker notification.

TABLE I
SUMMARY OF TIME STATISTICS FOR DECISION-MAKER NOTIFICATION

E. End-To-End Time From Event Occurrence to
Decision-Maker Notification

In this section, we study the end-to-end system time between
event occurrence and decision-maker notification. The compo-
nents of the end-to-end time include epochs 1–5 in Fig. 13.
Decision makers are notified of events using SMS or e-mail.
In the case of SMS notification, a short Simple Mail Transfer
Protocol (SMTP) message is sent to an e-mail-to-SMS gateway
on a carrier’s network, whereas with e-mail notification, the
SMTP message length is unrestricted, and a message is sent to
an e-mail server. The primary performance metric for prototype
TSSN performance is the time between event occurrences until
a decision maker is notified using an SMS message.

To gain an understanding of the end-to-end system time and
to overcome any clock errors in the MRN subsystem, we set up
a laboratory experiment to determine the elapsed time between
an event occurrence and the TSSN generation of the related
event alert. In this experiment, a stopwatch was started when a
seal was either broken or closed. When the MRN SensorNode
service generated an Alert message, the stopwatch was stopped.
In Table I, we see that the longest observed time in epoch 1 is
about 8.8 s, whereas the mean is about 2.7 s.

Because the commercial wireless networks used for
decision-maker notification are outside the TSSN control, a
second laboratory experiment was carried out to determine the
elapsed time in epoch 5. In this experiment, a client program
was written to send messages to the VNOC AlarmReporting
service. A stopwatch was started when the VNOC sent an
alarm to a decision maker, and the stopwatch was stopped when
the decision maker’s phone received an SMS message. This
experiment was repeated for four different carriers, resulting in
the data shown in Table I, row 5.

In Table I, we see that, although SMS was not designed
as a real-time system, it provides excellent notification for
this application, because most of our messages were delivered
within 1 min. Combining all of these results, we see that, in
these experiments, the longest observed end-to-end system time
was just more than 1 min2 to notify decision makers of events.
Most of this time is spent delivering an SMS message to the
decision maker; therefore, we conclude that the TSSN provides
a mechanism for timely notification of decision makers.

F. Modeling of Decision-Maker Notification Time

In this section, we determine the likelihood of timely event
notification. To determine the likelihood of timely event noti-
fication, a probabilistic model is needed for the time epochs
shown in Fig. 13. The observed histograms for each epoch visu-
ally resembled a Gamma distribution. Thus, in this analysis, we
assume that the times in each epoch followed a Gamma prob-
ability density function. Although the number of observations
(less than 130) was insufficient to statistically validate this as-
sumption, this postulate allows us to probabilistically determine
if the TSSN prototype can provide event notification within
15 min [5], as required. The parameters for the distributions
are estimated from the collected data and shown in Table II,
where α̂ and θ̂ represent the shape and scale parameters of the
associated Gamma random variable. Let τ , which is composed
of each of the epochs presented in Sections V-C–E, represent

2This time is broken out as follows: 1) in the longest observed times in our
experiments, it took approximately 8.8 s between event occurrence and the
TSSN to generate an alert; 2) it took approximately 4.91 s for an alert message
to go through the TSSN until notification was sent to decision makers; and 3) it
took up to 58.7 s to deliver an SMS message to decision makers.

3952 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 59, NO. 8, OCTOBER 2010

TABLE II
ESTIMATED GAMMA DISTRIBUTION PARAMETERS FOR THE TIME TAKEN BETWEEN SEAL EVENTS AND DECISION-MAKER NOTIFICATION

TABLE III
SUMMARY OF TIME STATISTICS FOR OTHER TSSN INTERACTIONS

TABLE IV
SUMMARY OF MESSAGE-SIZE STATISTICS

the total time taken from event occurrence on the train to
decision-maker notification on a mobile phone. Then, τ =
E1 + E2,4 + E3 + E5, and we use the results in [28] to show
that Pr[τ ≤ 240 sec] = 99.9%. These results indicate that the
prototype TSSN can notify decision makers in a timely manner
with very high probability.

G. Timing Analysis of Other TSSN Interactions

Table III summarizes request–response, processing, and net-
work time statistics for interaction between various TSSN
components. The statistics on the VNOC → MRN → VNOC
interaction allow us to draw conclusions on request–response
and processing times for certain (start or stop monitoring at the
MRN and get current MRN location) VNOC commands. The
TDE → VNOC → TDE interaction statistics give us insight
into the time taken to initiate and process commands to start or
stop monitoring at the MRN, get the MRN’s current location, or
to process the SetAlarmSecure command. The VNOC forwards
these commands to the MRN and returns the MRN response
to the TDE. To the TDE, all the elapsed time from when the
VNOC receives a message from the TDE until the VNOC
sends a response is processing time at the VNOC, although
part of that time is spent forwarding a response to the MRN
and waiting for a response. Finally, the statistics on VNOC →
TDE → VNOC interactions allow us to draw conclusions on
request–response, processing, and network times for the TDE
to store alarm messages and execute shipment queries. Both of
these actions are carried out when the VNOC AlarmProcessor
service is about to send an alarm to the VNOC AlarmReporting
service. Note that there are no results for the MRN → VNOC →
MRN interaction. This condition is due to two reasons: 1) The

clock drift in the MRN prevents us from computing a one-
way network delay, and 2) the MRN only generates response
messages. As expected, there are no request messages that
originate in the MRN that could be used in a log entry couple
to calculate request–response or processing times.

H. Message Sizes

Table IV summarizes the message size statistics for all
the messages exchanged in the TSSN. Message size data are
needed for a model [26] that is under development to deter-
mine system tradeoffs and the optimal or near-optimal sensor
locations when using a rail-borne cargo monitoring system. The
cost of transmitting a message from the train to an operations
center is one component of this model. This transmission cost,
in turn, depends on the average message length transmitted
from the train and the frequency at which these messages are
generated.

VI. REFINEMENTS BASED ON EXPERIMENTAL RESULTS

This section proposes refinements to the TSSN based on
experimental results. Recall from Section III-B that we have
corrected the clock drift problem by using a high-performance
GPS receiver to get high-quality local time on the TSSN
collector node. In addition, postprocessing of the log files
also indicated that a unique identifier—perhaps composed of
a timestamp and counter—is needed in the Alert, MRN_Alarm,
and NOC_Alarm messages to trace an Alert message through
the TSSN. This identifier can also be used in the future to locate
MRN_Alarm messages that need to be retransmitted to the
VNOC following a loss of connectivity. Finally, the identifier

FOKUM et al.: OPEN-SYSTEM TRANSPORTATION SECURITY SENSOR NETWORK: FIELD-TRIAL EXPERIENCES 3953

can be used to mark previously processed messages so that the
VNOC does not process the same message more than once.

Additional TSSN enhancements include the following
approaches:

• redesigning the MRN hardware so that the TSSN collector
node has redundant backhaul communication capabilities,
e.g., multiple satellite and cellular modems, each with a
different provider;

• creating a comprehensive security framework for the
TSSN (ongoing research addresses this issue [29]);

• enhancing sensor capabilities so that sensors can en-
gage in multihop communications to enable whole-train
monitoring.

The desired result of this paper is a standards-based open
environment for cargo monitoring with low-entry barriers to
enable broader access by stakeholders while showing a path to
commercialization.

VII. RELATED WORK

In this section, we provide a brief overview of related re-
search to monitor trains and to secure cargo in motion. In 2005,
Edwards et al. [30] presented a prototype system for monitoring
and controlling various sensors and actuators on a freight train.
The prototype uses a controller area network (CAN) bus to
collect data from the sensors. The data are then coupled with
GPS information and reported to a web server through a code-
division multiple access (CDMA)-based transmitter. Edwards
et al. [30] argue that on-board sensing of mechanical defects
enables car owners to track defects and proactively sched-
ule maintenance at a time and location that makes economic
sense.

The Transf-ID system [31], which was proposed in 2009,
uses radio frequency identification (RFID) tags and an SOA to
track cargo, railcars, and frequently serviced parts. The authors
in [31] argue that the use of the Transf-ID system improves
rail freight safety, because part maintenance schedules are now
based on actual use.

In 2007, Lauf and Sauff [32] proposed a security protocol for
transmitting information from sensors within a shipping con-
tainer to a trusted third party. Such a protocol permits tracing
liability for cargo theft and damage while minimizing the risk
that shipping containers can be used for terrorism or shipment
of contraband. The protocol was successfully deployed to test
hardware; however, additional research is needed to create
tamper-resistant units for monitoring container security [32].
In addition, in 2007, Ruiz-Garcia et al. [33] argued that the
technology for developing a monitoring system for refrigerated
containers already exists. They added that sensor readings and
GPS information can be combined to track a shipping container
through different stages of the supply chain.

The review of related work presented in this section shows
that other researchers have monitored train equipment using
an SOA and developed security protocols to communicate
with sensors inside shipping containers. To the best of our
knowledge, the TSSN is the first effort that uses sensors and
an open SOA to monitor freight in motion.

VIII. CONCLUSION

In this paper, we have presented results from field trials of
the prototype TSSN. The TSSN is an open system where dif-
ferent vendors can supply different components of the system.
Within the TSSN framework, we have successfully combined
sensor and shipment information to provide event notification to
distributed decision makers. This paper has shown results that
document the interactions between the different components
of the TSSN. Based on our experiments and evaluations with
the prototype, the TSSN architecture is viable for monitoring
rail-borne cargo. We have successfully demonstrated that alert
messages can be sent from a moving train to the VNOC and
combined with cargo information that is forwarded to geo-
graphically distributed decision makers using either SMS or
e-mail. Furthermore, based on the experiments reported here,
we detected events and notified decision makers in just more
than 1 min. Thus, we conclude that the TSSN architecture pro-
vides a mechanism for timely notification of decision makers.
However, additional development and testing are needed before
the TSSN architecture can be deployed in production systems.

ACKNOWLEDGMENT

The authors would like to thank A. Francis for reading and
commenting on previous versions of this paper, Kansas City
Southern Railway for their participation in the short-haul rail
trial, and L. Sackman of EDS, an HP company, for assisting
with the short-haul rail trial.

REFERENCES

[1] Cargo Theft’s High Cost—Headline, Fed. Bur. Investigation, Washington,
DC, Jul. 21, 2006. [Online]. Available: http://www.fbi.gov/page2/july06/
cargo_theft072106.htm

[2] Organisation Economic Cooperation Develop., Paris, France, Eur. Conf.
Ministers Transport Container Transport Security Across Modes, 2005.

[3] Reference Model for Service-Oriented Architecture 1.0, Oct. 12, 2006,
[Online]. Available: http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf

[4] Trade Data Exchange—Nothing Short of a Logistics Revolution, KC
SmartPort, Nov. 10, 2008. [Online]. Available: http://www.joc-digital.
com/joc/20081110/?pg=29

[5] Private Communication, 2007.
[6] A. Arsanjani, J. Martin, P. Tarr, and B. Hailpern, “Web services: Promises

and compromises,” Queue, vol. 1, no. 1, pp. 48–58, Mar. 2003.
[7] H. Saiedian and S. Mulkey, “Performance evaluation of eventing web

services in real-time applications,” IEEE Commun. Mag., vol. 46, no. 3,
pp. 106–111, Mar. 2008.

[8] J. Brown, B. Shipman, and R. Vetter, “SMS: The short message service,”
Computer, vol. 40, no. 12, pp. 106–110, Dec. 2007.

[9] D. T. Fokum, V. S. Frost, D. DePardo, M. Kuehnhausen, A. N. Oguna,
L. S. Searl, E. Komp, M. Zeets, D. Deavours, J. B. Evans, and
G. J. Minden, “Experiences from a transportation security sensor network
field trial,” in Proc. 3rd IEEE Workshop EFSOI: Towards Socially Aware
Netw., Honolulu, HI, Dec. 2009, pp. 1–6.

[10] M. Kuehnhausen, “Service-oriented architecture for monitoring cargo in
motion along trusted corridors,” M.S. thesis, Univ. Kansas, Lawrence, KS,
Jul. 2009.

[11] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana, Web Services
Description Language (WSDL) Ver. 2.0 Part 1: Core Language, Jun. 2007.
[Online]. Available: http://www.w3.org/TR/wsdl20

[12] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, H. F. Nielsen,
A. Karmarkar, and Y. Lafon, SOAP Ver. 1.2 Part 1: Messaging Frame-
work (Second ed.), Apr. 2007. [Online]. Available: http://www.w3.
org/TR/soap12-part1/

[13] D. Box, E. Christensen, F. Curbera, D. Ferguson, J. Frey, M. Hadley,
C. Kaler, D. Langworthy, F. Leymann, B. Lovering, S. Lucco, S. Millet,
N. Mukhi, M. Nottingham, D. Orchard, J. Shewchuk, E. Sindambiwe,
T. Storey, S. Weerawarana, and S. Winkler, Web Services Addressing

3954 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 59, NO. 8, OCTOBER 2010

(WS-Addressing), Aug. 10 2004. [Online]. Available: http://www.w3.
org/Submission/ws-addressing/

[14] Web Services Security: SOAP Message Security 1.0, Mar. 2004.
[Online]. Available: http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-soap-message-security-1.0.pdf

[15] D. Box, L. F. Cabrera, C. Critchley, F. Curbera, D. Ferguson, S. Graham,
D. Hull, G. Kakivaya, A. Lewis, B. Lovering, P. Niblett, D. Orchard,
S. Samdarshi, J. Schlimmer, I. Sedukhin, J. Shewchuk, S. Weerawarana,
and D. Wortendyke, Web Services Eventing (WS-Eventing), Mar. 2006.
[Online]. Available: http://www.w3.org/Submission/WS-Eventing/

[16] Apache Axis2 Project Documentation, The Apache Software Foundation,
Aug. 24, 2008. [Online]. Available: http://ws.apache.org/axis2/

[17] D. Mulvey, “HSPA,” Commun. Eng., vol. 5, no. 1, pp. 38–41,
Feb./Mar. 2007.

[18] C. E. Fossa, R. A. Raines, G. H. Gunsch, and M. A. Temple, “An overview
of the IRIDIUM (R) low-Earth-orbit (LEO) satellite system,” in Proc.
IEEE NAECON, Dayton, OH, Jul. 1998, pp. 152–159.

[19] Hi-G-Tek, Hi-G-Tek, Rockville, MD, Mar. 17, 2009. [Online]. Available:
http://www.higtek.com/

[20] Apache log4j Project Documentation, The Apache Software Foundation,
Sep. 1, 2007. [Online]. Available: http://logging.apache.org/log4j/

[21] Esper: Complex Event Processing—Project Documentation, EsperTech,
Wayne, NJ, Feb. 11, 2009. [Online]. Available: http://esper.codehaus.org/

[22] Hi-G-Tek Ltd., Rockville, MD, DataReader and DataSeal: User’s Man-
ual, UM4710, 2001.

[23] Google Maps: Web Mapping Service, Google, May 6, 2009. [Online].
Available: http://maps.google.com

[24] D. L. Mills, “Internet time synchronization: The network time protocol,”
IEEE Trans. Commun., vol. 39, no. 10, pp. 1482–1493, Oct. 1991.

[25] J. Clark and S. DeRose, XML Path Language (XPath), Nov. 16, 1999.
[Online]. Available: http://www.w3.org/TR/xpath

[26] D. T. Fokum, Optimal communications systems and network design for
cargo monitoring, 10th Workshop Mobile Comput. Syst. Appl., Santa
Cruz, CA, Feb. 2009.

[27] D. T. Fokum, V. S. Frost, D. DePardo, M. Kuehnhausen, A. N. Oguna,
L. S. Searl, E. Komp, M. Zeets, D. D. Deavours, J. B. Evans, and
G. J. Minden, “Experiences from a transportation security sensor network
field trial,” Univ. Kansas, Lawrence, KS, ITTC Tech. Rep. ITTC-FY2009-
TR-41420-11, Jun. 2009.

[28] S. Nadarajah, “A review of results on sums of random variables,” Acta
Applicandae Mathematicae, vol. 103, no. 2, pp. 131–140, Sep. 2008.

[29] E. Komp, V. Frost, and M. Kuehnhausen, “Implementing web services:
Conflicts between security features and publish/subscribe communica-
tion protocols,” Univ. Kansas, Lawrence, KS, ITTC Tech. Rep. ITTC-
FY2010-TR-41420-19, Feb. 2010.

[30] M. C. Edwards, J. Donelson, III, W. M. Zavis, A. Prabhakaran,
D. C. Brabb, and A. S. Jackson, “Improving freight rail safety with on-
board monitoring and control systems,” in Proc. ASME/IEEE Joint Rail
Conf., Pueblo, CO, Mar. 2005, pp. 117–122.

[31] J. Fernandez, J. C. Y. Garcia, Y.-S. M. Garcia, and J. Santos, “Transf-ID:
Automatic ID and data capture for rail freight asset management,” IEEE
Internet Comput., vol. 13, no. 1, pp. 22–30, Jan./Feb. 2009.

[32] J. O. Lauf and H. Sauff, “Secure lightweight tunnel for monitoring trans-
port containers,” in Proc. 3rd SecureComm, Nice, France, Sep. 2007,
pp. 484–493.

[33] L. Ruiz-Garcia, P. Barreiro, J. Rodriguez-Bermejo, and J. I. Robla, “Re-
view: Monitoring the intermodal, refrigerated transport of fruit using
sensor networks,” Spanish J. Agricultural Res., vol. 5, no. 2, pp. 142–156,
2007.

Daniel T. Fokum (S’07) received the B.A. degree
in computer science from Park University, Parkville,
MO, in 2000 and the M.S. degree in computer sci-
ence from the University of Missouri, Kansas City,
in 2005.

He is currently a Graduate Research Assistant with
the Information and Telecommunication Technology
Center while pursuing the Ph.D. degree in computer
science with the Department of Electrical Engineer-
ing and Computer Science, University of Kansas
(KU), Lawrence. Prior to joining KU in 2006, he

worked in industry for six years. His research interests include sensor and
wireless networks, information security, and concurrence control in databases.

Mr. Fokum is a member of the IEEE Computer Society, the IEEE Commu-
nication Society, and the Association for Computing Machinery.

Victor S. Frost (S’75–M’82–SM’90–F’98) received
the B.S., M.S., and Ph.D. degrees from the Univer-
sity of Kansas (KU), Lawrence, in 1977, 1978, and
1982, respectively.

In 1982, he joined the faculty of KU and was the
Dan F. Servey Distinguished Professor of Electrical
Engineering and Computer Science. He was the Di-
rector of the KU Telecommunications and Informa-
tion Technology Center (ITTC) for more than ten
years. From 1987 to 1996, he was the Director of the
KU Telecommunications and Information Sciences

Laboratory. He is currently a Program Director with the Computer and Network
Systems (CNS) Division, Computer and Information Science and Engineering
(CISE) Directorate, National Science Foundation (NSF). He is currently the
Area Editor for Communications Simulation of the ACM Transactions on
Simulation and Modeling of Computer Systems. He has been involved in
research on several national-scale high-speed wide-area testbeds. He was an
Investigator on a gigabit testbed (MAGIC) research effort and the ACTS
ATM Internetwork. His research has been sponsored by government agencies,
including the NSF, the Defense Advanced Research Projects Agency, the Rome
Laboratory, and the National Aeronautics and Space Administration. He has
been involved in research for numerous corporations, including Sprint, NCR,
Nortel, Telesat Canada, AT&T, McDonnell Douglas, DEC, and COMDISCO
Systems. He has been a Principal Investigator on more than 35 research efforts
and has been involved as a Coinvestigator on more than 40 projects. As a
result of those efforts, he has published more than 100 journal articles and
conference proceedings. His current research interests include communications
systems and networks, networking testbeds, Internet quality of service, traffic
management, and integrated broadband communication networks.

Dr. Frost received the Presidential Young Investigator Award from the NSF
in 1984. He was listed in the Kansas City Star Tech 50 in 2000 and 2002. He is
a Member-at-Large of the IEEE Communications Society Board of Governors
for the term 2008–2011.

Martin Kuehnhausen (S’10) received the Dipl.Inf.
(B.A.) degree from the Berufsakademie Stuttgart,
Stuttgart, Germany, in 2006 and the M.S. degree
from the University of Kansas (KU), Lawrence, in
2009. He is currently working toward the Ph.D.
degree in computer science with the Department of
Electrical Engineering and Computer Science, KU.

From 2003 to 2007, he worked on various projects
with IBM. He was part of the Secure Trade Lane
Team, creating an enterprise real-time container-
tracking solution. He is currently working on the

SensorNet Project with the Information and Telecommunication Technology
Center, KU. His research interests include intelligent systems, information and
data management, web service technologies, and software engineering.

Mr. Kuehnhausen is a member of the IEEE Computer Society, the IEEE
Communications Society, and the IEEE Intelligent Transportation Systems
Society.

Daniel DePardo (SM’00) is a graduate of the U.S.
Army Intelligence Center School.

He is currently a Research Engineer with the Infor-
mation and Telecommunication Technology Center
(ITTC), University of Kansas (KU), Lawrence, and
primarily supports the electronic hardware needs of
ITTC laboratories. He has extensive test and mea-
surement, hardware design, and prototype fabrica-
tion experience, and his research interests include
radio transceiver and antenna design.

Mr. DePardo is a KU Staff Fellow.

FOKUM et al.: OPEN-SYSTEM TRANSPORTATION SECURITY SENSOR NETWORK: FIELD-TRIAL EXPERIENCES 3955

Angela N. Oguna (S’09) is working toward the B.S.
degree in electrical engineering with the University
of Kansas (KU), Lawrence. For the last two years,
she has been an undergraduate Research Assistant
with the KU Information and Telecommunication
Technology Center.

She presented her work at the 2009 KU Under-
graduate Research Symposium and at the 2010 IEEE
Region V Student Paper Contest. Her research inter-
ests include sensor networks and integrated commu-
nications for smart grid technology.

Ms. Oguna is a Student Member of the IEEE Power Engineering Society.

Leon S. Searl received the B.S. and M.S. degrees in
electrical engineering from the University of Kansas,
Lawrence, in 1985 and 1987, respectively.

He worked for 12 years in private industry, archi-
tecting and developing software for communication
system simulation, satellite test set control, and elec-
tronic design automation tools. Since 2000, he has
been a Research Engineer with the Information and
Telecommunication Technology Center, University
of Kansas, designing and developing hardware and
software for research projects in dynamically config-

urable radios and radio networks, ambient computing, space-based computer
networks, and wireless sensor networks.

Edward Komp received the B.A. degree in mathe-
matics and the M.S. degree in computer science from
the University of Kansas (KU), Lawrence, in 1976
and 1979, respectively.

After more than 15 years of designing, imple-
menting, and managing commercial software de-
velopment, he joined the research staff of the KU
Information and Telecommunications Technology
Center, where he is currently a Research Engineer.
His primary research interests include specialized
computer language design for application-specific

domains, functional programming, software development environments, and
networking.

Matthew Zeets received the B.S. degree in com-
puter science from the University of Kansas (KU),
Lawrence, in 2008, where he is working toward the
M.S. degree in computer science.

In 2009 and 2010, he was a Graduate Teaching
Assistant for a programming class. In 2008 and
2009, he was a Graduate Research Assistant with
the Information and Telecommunication Technology
Center. From 2006 to 2008, he was the President of
the Association for Computing Machinery Chapter
at KU. His research interests include information

security and the use of Web 2.0 technologies in the supply chain industry.

Daniel D. Deavours (M’01) received the B.S. degree
in computer engineering and the M.S. and Ph.D.
degrees in electrical engineering from the University
of Illinois at Urbana–Champaign.

In August 2001, he joined the University of
Kansas (KU), Lawrence, where he is currently a
Research Associate Professor. He has worked with
the Bluetooth SIG in developing a Bluetooth in-
teroperability test program, started and directs the
RFID Alliance Laboratory, and has been active in
the SensorNet Initiative. His primary research inter-

ests include developing rigorous methods for analyzing and developing radio
frequency identification antennas, particularly microstrip antennas. He is the
holder of three patents. He has published more than 20 technical papers and
five journal articles.

Joseph B. Evans (SM’01) received the B.S.E.E. de-
gree from Lafayette College, Easton, PA, in 1983 and
the M.S.E., M.A., and Ph.D. degrees from Princeton
University, Princeton, NJ, in 1984, 1986, and 1989,
respectively.

He is the Deane E. Ackers Distinguished Profes-
sor of Electrical Engineering and Computer Science
with the University of Kansas (KU), Lawrence. From
2008 to 2010, he was the Director of the KU In-
formation and Telecommunication Technology Cen-
ter, and from 2005 to 2008, he was the Director

of Research Information Technology. He is currently on a partial leave of
absence from KU to perform research on TIGR, which is a tactical information
system that he helped develop and has extensively been deployed in Iraq and
Afghanistan for the Defense Advanced Research Projects Agency and the U.S.
Army. From 2003 to 2005, he was a Program Director with the National Science
Foundation. He has been a Researcher with the Olivetti and Oracle Research
Laboratory, Cambridge University Computer Laboratory, the United States Air
Force Rome Laboratories, and AT&T Bell Laboratories. He has co-founded
several technology companies, including a network gaming company acquired
by Microsoft in 2000 and a defense-oriented venture recently acquired by
General Dynamics. His research interests include cognitive radio networking,
spectrum technology and policy, sensor networking, adaptive systems, and
network testbeds.

Dr. Evans is currently a member of the IEEE Communications Society Board
of Governors.

Gary J. Minden (S’73–M’81–SM’97) received the
B.S. and Ph.D. degrees in electrical engineering from
the University of Kansas (KU), Lawrence, in 1973
and 1982, respectively.

From 1978 to 1980, he was a Vice President of
CHILD, Inc., where he was a codesigner of the
LIGHT-50 computer graphic terminal. In 1981, he
joined the Faculty of Electrical Engineering, KU,
where he led the implementation of a new computer
engineering program. In 1991, he completed a sab-
batical with Digital’s System Research Center, work-

ing on gigabit local area networks. From June 1994 to December 1996, he was a
Program Manager with the Information Technology Office, Defense Advanced
Research Projects Agency, working on high-performance networking systems.
He is currently a Professor of electrical engineering and computer science
with KU. He initiated a new research program in active networking. He has
led several research projects in high-performance wide-area networks, mobile
wireless systems, adaptive computational systems, and innovative network-
ing protocols. He has served on three Defense Science Board Task Forces:
1) Tactical Battlefield Communications; 2) Spectrum Management, and
3) the Wideband RF Modulation task force, for which he was a Chair. He
has served on a National Research Council (NRC) review panel for the Army
Research Laboratory, has contributed to several DDR and E review panels,
and has contributed to an NRC report on future tactical radio systems. His
research interests include large-scale distributed systems that encompass high-
performance networks, mobile wireless networks, software-defined radios,
computing systems, and distributed software systems.

Dr. Minden is a member of the Association for Computing Machinery and
the American Association for the Advancement of Science.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

